Single-step pyrolysis of Stipa Tenacissima fibers to hard carbon: A potential route for sodium-ion battery anodes

被引:1
|
作者
Daoudi, Hamza [1 ,2 ]
Kassab, Zineb [2 ]
Chari, Abdelwahed [2 ]
Alami, Jones [2 ]
Dahbi, Mouad [2 ]
El Achaby, Mounir [2 ]
机构
[1] Univ Quebec, Inst Natl Rech Sci, Ctr Eau Terre Environm, 490 rue Couronne, Quebec City, PQ G1K 9A9, Canada
[2] Mohammed VI Polytech Univ, Mat Sci Energy & Nanoengn MSN Dept, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
关键词
Alfa plant; Pyrolysis; Hard carbon; Sodium-ion batteries; NA-ION; HIGH-CAPACITY; ALPHA FIBERS; CELLULOSE NANOFIBRILS; NEGATIVE ELECTRODES; TENSILE PROPERTIES; SUGARCANE BAGASSE; PERFORMANCE; BIOMASS; MECHANISMS;
D O I
10.1016/j.diamond.2024.111679
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hard Carbon (HC) has emerged as a viable candidate for the negative electrode material in sodium-ion batteries (SIBs). This study focuses on the development of a novel HC-negative electrode derived from the pyrolysis of Stipa tenacissima fibers (STF). Prior to pyrolysis, STF underwent a hot water wash pre-treatment, and various pyrolysis temperatures (800 degrees C, 1000 degrees C, and 1300 degrees C) were investigated to elucidate their influence on HC properties and performance. Structural analysis revealed significant differences in the HC structure, highlighting a direct correlation between capacity improvement and the size of accessible micropores for sodium insertion. Composite electrodes were assembled and evaluated in non-aqueous sodium half-cells to assess HC's performance. Notably, increasing the pyrolysis temperature resulted in higher reversible capacity (RC). Specifically, HC prepared at 1300 degrees C exhibited an RC of 270 mAh g(-1), initial coulombic efficiency (ICE) of approximately 60 %, and exceptional reversibility with 99 % capacity retention after 90 cycles at a 25 mA g(-1) of current density (CD). These results surpassed those obtained with HC prepared at 800 degrees C and 1000 degrees C. Moreover, this study explores the biological, biochemical, biophysical, and structural advantages conferred by STF, making it a promising component in SIBs, with the ultimate goal of establishing long-lasting, high-performance battery systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes
    Zhu, Xinxin
    Liu, Dan
    Zheng, Dong
    Wang, Gongwei
    Huang, Xingkang
    Harris, Joshua
    Qu, Deyu
    Qu, Deyang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) : 13294 - 13301
  • [42] Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery
    Hasa, Ivana
    Verrelli, Roberta
    Hassoun, Jusef
    ELECTROCHIMICA ACTA, 2015, 173 : 613 - 618
  • [43] High-sulfur-doped hard carbon for sodium-ion battery anodes with large capacity and high initial coulombic efficiency
    Wan, BaoShan
    Zhang, Haiyan
    Tang, Shuang
    Li, Shengkai
    Wang, Yan
    Wen, Daofeng
    Zhang, Minglu
    Li, Zhenghui
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (18) : 4338 - 4345
  • [44] Investigating the Role of Surface Roughness and Defects on EC Breakdown, as a Precursor to SEI Formation in Hard Carbon Sodium-Ion Battery Anodes
    Olsson, Emilia
    Cottom, Jonathon
    Alptekin, Hande
    Au, Heather
    Crespo-Ribadeneyra, Maria
    Titirici, Maria-Magdalena
    Cai, Qiong
    SMALL, 2022, 18 (43)
  • [45] Chinese baijiu spent grains-based high-performance porous hard carbon for sodium-ion battery anodes
    Xu, Longhan
    Li, Xiaolei
    Zhou, Qiang
    An, Xuguang
    Zhang, Jing
    Yao, Weitang
    Liu, Xiaonan
    Kong, Qingquan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (06)
  • [46] The potential of plasma-derived hard carbon for sodium-ion batteries
    Zia, Abdul Wasy
    Rasul, Shahid
    Asim, Muhammad
    Samad, Yarjan Abdul
    Shakoor, Rana Abdul
    Masood, Tariq
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [47] Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries
    Suo, Liyao
    Zhu, Jiahao
    Shen, Xueyang
    Wang, Yizhou
    Han, Xiao
    Chen, Zhongqiang
    Li, Yi
    Liu, Yurong
    Wang, Dan
    Ma, Yanwen
    CARBON, 2019, 151 : 1 - 9
  • [48] Sustainable one step process for making carbon-free TiO2 anodes and sodium-ion battery electrochemistry
    Chadha, Tandeep S.
    Dutta, Prasit Kumar
    Raliya, Ramesh
    Mitra, Sagar
    Biswas, Pratim
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (07): : 1582 - 1587
  • [49] Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries
    Cao, Liyun
    Hui, Wenle
    Xu, Zhanwei
    Huang, Jianfeng
    Zheng, Peng
    Li, Jiayin
    Sun, Qianqian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 : 632 - 637
  • [50] Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries
    Rios, Carolina del Mar Saavedra
    Simone, Virginie
    Simonin, Loic
    Martinet, Sebastien
    Dupont, Capucine
    BIOMASS & BIOENERGY, 2018, 117 : 32 - 37