Single-step pyrolysis of Stipa Tenacissima fibers to hard carbon: A potential route for sodium-ion battery anodes

被引:1
|
作者
Daoudi, Hamza [1 ,2 ]
Kassab, Zineb [2 ]
Chari, Abdelwahed [2 ]
Alami, Jones [2 ]
Dahbi, Mouad [2 ]
El Achaby, Mounir [2 ]
机构
[1] Univ Quebec, Inst Natl Rech Sci, Ctr Eau Terre Environm, 490 rue Couronne, Quebec City, PQ G1K 9A9, Canada
[2] Mohammed VI Polytech Univ, Mat Sci Energy & Nanoengn MSN Dept, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
关键词
Alfa plant; Pyrolysis; Hard carbon; Sodium-ion batteries; NA-ION; HIGH-CAPACITY; ALPHA FIBERS; CELLULOSE NANOFIBRILS; NEGATIVE ELECTRODES; TENSILE PROPERTIES; SUGARCANE BAGASSE; PERFORMANCE; BIOMASS; MECHANISMS;
D O I
10.1016/j.diamond.2024.111679
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hard Carbon (HC) has emerged as a viable candidate for the negative electrode material in sodium-ion batteries (SIBs). This study focuses on the development of a novel HC-negative electrode derived from the pyrolysis of Stipa tenacissima fibers (STF). Prior to pyrolysis, STF underwent a hot water wash pre-treatment, and various pyrolysis temperatures (800 degrees C, 1000 degrees C, and 1300 degrees C) were investigated to elucidate their influence on HC properties and performance. Structural analysis revealed significant differences in the HC structure, highlighting a direct correlation between capacity improvement and the size of accessible micropores for sodium insertion. Composite electrodes were assembled and evaluated in non-aqueous sodium half-cells to assess HC's performance. Notably, increasing the pyrolysis temperature resulted in higher reversible capacity (RC). Specifically, HC prepared at 1300 degrees C exhibited an RC of 270 mAh g(-1), initial coulombic efficiency (ICE) of approximately 60 %, and exceptional reversibility with 99 % capacity retention after 90 cycles at a 25 mA g(-1) of current density (CD). These results surpassed those obtained with HC prepared at 800 degrees C and 1000 degrees C. Moreover, this study explores the biological, biochemical, biophysical, and structural advantages conferred by STF, making it a promising component in SIBs, with the ultimate goal of establishing long-lasting, high-performance battery systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges
    Xiao, Biwei
    Rojo, Teofilo
    Li, Xiaolin
    CHEMSUSCHEM, 2019, 12 (01) : 133 - 144
  • [2] Rational Route for Increasing Intercalation Capacity of Hard Carbons as Sodium-Ion Battery Anodes
    Katsuyama, Yuto
    Nakayasu, Yuta
    Kobayashi, Hiroaki
    Goto, Yasuto
    Honma, Itaru
    Watanabe, Masaru
    CHEMSUSCHEM, 2020, 13 (21) : 5762 - 5768
  • [3] Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes
    Dou, Xinwei
    Hasa, Ivana
    Saurel, Damien
    Jauregui, Maria
    Buchholz, Daniel
    Rojo, Teofilo
    Passerini, Stefano
    CHEMSUSCHEM, 2018, 11 (18) : 3276 - 3285
  • [4] Nano Hard Carbon Anodes for Sodium-Ion Batteries
    Kim, Dae-Yeong
    Kim, Dong-Hyun
    Kim, Soo-Hyun
    Lee, Eun-Kyung
    Park, Sang-Kyun
    Lee, Ji-Woong
    Yun, Yong-Sup
    Choi, Si-Young
    Kang, Jun
    NANOMATERIALS, 2019, 9 (05)
  • [5] HYBRID CARBON MATERIALS FOR SODIUM-ION BATTERY ANODES
    Nasraoui, M.
    Urvanov, S. A.
    Filimonenkov, I. S.
    Mordkovich, V. Z.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2023, 66 (10): : 89 - 96
  • [6] Sodium-ion battery anodes from carbon depositions
    Wu, Jimmy
    Moradmand, Simin
    Pang, Wei Kong
    Allen, Jessica
    Sharma, Neeraj
    ELECTROCHIMICA ACTA, 2021, 379
  • [7] Influence of Hard/Soft Carbon Ratio in Composite Anodes for Enhanced Performance in Sodium-Ion Battery
    Ahmed, Israr
    Rosson, Lucas
    Forsyth, Maria
    Byrne, Nolene
    CHEMELECTROCHEM, 2025, 12 (06):
  • [8] Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes
    Xiao, Biwei
    Soto, Fernando A.
    Gu, Meng
    Han, Kee Sung
    Song, Junhua
    Wang, Hui
    Engelhard, Mark H.
    Murugesan, Vijayakumar
    Mueller, Karl T.
    Reed, David
    Sprenkle, Vincent L.
    Balbuena, Perla B.
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (24)
  • [9] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):
  • [10] Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries
    Wang, Jiarui
    Xi, Lei
    Peng, Chenxi
    Song, Xin
    Wan, Xuanhong
    Sun, Luyi
    Liu, Meinan
    Liu, Jun
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (08)