Heralded nonlocal quantum gates for distributed quantum computation in a decoherence-free subspace

被引:4
|
作者
Su, Wanhua [1 ]
Qin, Wei [2 ,3 ,4 ]
Miranowicz, Adam [4 ,5 ]
Li, Tao [1 ,6 ]
Nori, Franco [4 ,7 ,8 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Phys, MIIT Key Lab Semicond Microstruct & Quantum Sensin, Nanjing 210094, Peoples R China
[2] Tianjin Univ, Ctr Joint Quantum Studies, Sch Sci, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Sch Sci, Dept Phys, Tianjin 300350, Peoples R China
[4] RIKEN, Theoret Quantum Phys Lab, Cluster Pioneering Res, Saitama 3510198, Japan
[5] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys & Astron, PL-61614 Poznan, Poland
[6] Engn Res Ctr Semicond Device Optoelect Hybrid Inte, Nanjing 210094, Peoples R China
[7] RIKEN, Quantum Comp Ctr, Quantum Informat Phys Theory Res Team, Wako, Saitama 3510198, Japan
[8] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ADVANTAGE; DYNAMICS; PHOTON; QUTIP; ATOM;
D O I
10.1103/PhysRevA.110.052612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a heralded protocol for implementing nontrivial quantum gates on two stationary qubits coupled to spatially separated cavities. By dynamically controlling the evolution of the composite system, nonlocal twoqubit quantum (e.g., CPHASE and CNOT) gates can be achieved without real excitations of either cavity modes or atoms. The success of our protocol is conditioned on projecting an auxiliary atom onto a postselected state, which simultaneously removes various detrimental effects of dissipation on the gate fidelity. In principle, the success probability of the gate can approach unity as the single-atom cooperativity becomes sufficiently large. Furthermore, we show its application for implementing single- and two-qubit gates within a decoherence-free subspace that is immune to a collective dephasing noise. This faithful, heralded, and nonlocal protocol could, therefore, be useful for distributed quantum computation and scalable quantum networks.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Quantum computation in triangular decoherence-free subdynamic space
    Qiao Bi
    Frontiers of Physics, 2015, 10 : 198 - 204
  • [32] Quantum computation in triangular decoherence-free subdynamic space
    Qiao Bi
    Frontiers of Physics, 2015, 10 (02) : 83 - 89
  • [33] Decoherence-free manipulation of photonic memories for quantum computation
    Sangouard, N
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [34] Magnetic resonance realization of decoherence-free quantum computation
    Ollerenshaw, JE
    Lidar, DA
    Kay, LE
    PHYSICAL REVIEW LETTERS, 2003, 91 (21)
  • [35] Quantum computation in triangular decoherence-free subdynamic space
    Bi, Qiao
    FRONTIERS OF PHYSICS, 2015, 10 (02) : 198 - 204
  • [36] Quantum computing using dissipation to remain in a decoherence-free subspace
    Beige, A
    Braun, D
    Tregenna, B
    Knight, PL
    PHYSICAL REVIEW LETTERS, 2000, 85 (08) : 1762 - 1765
  • [37] Long-distance quantum communication in a decoherence-free subspace
    Xue, Peng
    PHYSICS LETTERS A, 2008, 372 (46) : 6859 - 6866
  • [38] Transfer and teleportation of quantum states encoded in decoherence-free subspace
    Wei, Hua
    Deng, ZhiJiao
    Zhang, XiaoLong
    Feng, Mang
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [39] Quantum error avoiding code based on the decoherence-free subspace
    Zhang, Q
    Zhang, EY
    Tang, CJ
    ACTA PHYSICA SINICA, 2002, 51 (08) : 1675 - 1683
  • [40] One-way quantum computing in a decoherence-free subspace
    Tame, M. S.
    Paternostro, M.
    Kim, M. S.
    NEW JOURNAL OF PHYSICS, 2007, 9