SA-VQA: Structured Alignment of Visual and Semantic Representations for Visual Question Answering

被引:0
|
作者
Xiong, Peixi [1 ]
You, Quanzeng [2 ]
Yu, Pei [2 ]
Liu, Zicheng [2 ]
Wu, Ying [1 ]
机构
[1] Northwestern University, United States
[2] Microsoft Research
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning
引用
收藏
相关论文
共 50 条
  • [11] Structured Attentions for Visual Question Answering
    Zhu, Chen
    Zhao, Yanpeng
    Huang, Shuaiyi
    Tu, Kewei
    Ma, Yi
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1300 - 1309
  • [12] CQ-VQA: Visual Question Answering on Categorized Questions
    Mishra, Aakansha
    Anand, Ashish
    Guha, Prithwijit
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [13] CS-VQA: VISUAL QUESTION ANSWERING WITH COMPRESSIVELY SENSED IMAGES
    Huang, Li-Chi
    Kulkarni, Kuldeep
    Jha, Anik
    Lohit, Suhas
    Jayasuriya, Suren
    Turaga, Pavan
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1283 - 1287
  • [14] Inverse Visual Question Answering: A New Benchmark and VQA Diagnosis Tool
    Liu, Feng
    Xiang, Tao
    Hospedales, Timothy M.
    Yang, Wankou
    Sun, Changyin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 460 - 474
  • [15] Visual Question Answering Based on Position Alignment
    Xia, Qihao
    Yu, Chao
    Peng, Pingping
    Gu, Henghao
    Zheng, Zhengqi
    Zhao, Kun
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [16] Visual Question Answering with Textual Representations for Images
    Hirota, Yusuke
    Garcia, Noa
    Otani, Mayu
    Chu, Chenhui
    Nakashima, Yuta
    Taniguchi, Ittetsu
    Onoye, Takao
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3147 - 3150
  • [17] Improving Visual Question Answering by Semantic Segmentation
    Pham, Viet-Quoc
    Mishima, Nao
    Nakasu, Toshiaki
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 459 - 470
  • [18] VQA as a factoid question answering problem: A novel approach for knowledge-aware and explainable visual question answering
    Narayanan, Abhishek
    Rao, Abijna
    Prasad, Abhishek
    Natarajan, S.
    IMAGE AND VISION COMPUTING, 2021, 116
  • [19] Visual-Semantic Dual Channel Network for Visual Question Answering
    Wang, Xin
    Chen, Qiaohong
    Hu, Ting
    Sun, Qi
    Jia, Yubo
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [20] AI-VQA: Visual Question Answering based on Agent Interaction with Interpretability
    Li, Rengang
    Xu, Cong
    Guo, Zhenhua
    Fan, Baoyu
    Zhang, Runze
    Liu, Wei
    Zhao, Yaqian
    Gong, Weifeng
    Wang, Endong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5274 - 5282