Ensemble and Gossip Learning-Based Framework for Intrusion Detection System in Vehicle-to-Everything Communication Environment

被引:0
|
作者
Ali, Muhammad Nadeem [1 ]
Imran, Muhammad [1 ]
Ullah, Ihsan [1 ]
Raza, Ghulam Musa [1 ]
Kim, Hye-Young [2 ]
Kim, Byung-Seo [1 ]
机构
[1] Hongik Univ, Dept Software & Commun Engn, Sejong Si 30016, South Korea
[2] Hongik Univ, Sch Games Game Software, Bldg B,Room 211,2639 Sejong ro, Sejong Si 30016, South Korea
关键词
ensemble learning; gossip learning; NIDS; machine learning; data privacy; V2X; DDOS ATTACK DETECTION; IN-VEHICLE; MACHINE; DEFENSE;
D O I
10.3390/s24206528
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Autonomous vehicles are revolutionizing the future of intelligent transportation systems by integrating smart and intelligent onboard units (OBUs) that minimize human intervention. These vehicles can communicate with their environment and one another, sharing critical information such as emergency alerts or media content. However, this communication infrastructure is susceptible to cyber-attacks, necessitating robust mechanisms for detection and defense. Among these, the most critical threat is the denial-of-service (DoS) attack, which can target any entity within the system that communicates with autonomous vehicles, including roadside units (RSUs), or other autonomous vehicles. Such attacks can lead to devastating consequences, including the disruption or complete cessation of service provision by the infrastructure or the autonomous vehicle itself. In this paper, we propose a system capable of detecting DoS attacks in autonomous vehicles across two scenarios: an infrastructure-based scenario and an infrastructureless scenario, corresponding to vehicle-to-everything communication (V2X) Mode 3 and Mode 4, respectively. For Mode 3, we propose an ensemble learning (EL) approach, while for the Mode 4 environment, we introduce a gossip learning (GL)-based approach. The gossip and ensemble learning approaches demonstrate remarkable achievements in detecting DoS attacks on the UNSW-NB15 dataset, with efficiencies of 98.82% and 99.16%, respectively. Moreover, these methods exhibit superior performance compared to existing schemes.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] ENSEMBLE ADVERSARIAL TRAINING BASED DEFENSE AGAINST ADVERSARIAL ATTACKS FOR MACHINE LEARNING-BASED INTRUSION DETECTION SYSTEM
    Haroon, M. S.
    Ali, H. M.
    NEURAL NETWORK WORLD, 2023, 33 (05) : 317 - 336
  • [32] Enhancing cloud security: A study on ensemble learning-based intrusion detection systems
    Al-Sharif, Maha
    Bushnag, Anas
    IET COMMUNICATIONS, 2024, 18 (16) : 950 - 965
  • [33] A Comprehensive Survey on Ensemble Learning-Based Intrusion Detection Approaches in Computer Networks
    Lucas, Thiago Jose
    de Figueiredo, Inae Soares
    Tojeiro, Carlos Alexandre Carvalho
    de Almeida, Alex Marino G.
    Scherer, Rafal
    Brega, Jose Remo F.
    Papa, Joao Paulo
    da Costa, Kelton Augusto Pontara
    IEEE ACCESS, 2023, 11 : 122638 - 122676
  • [34] Intrusion Detection System with an Ensemble Learning and Feature Selection Framework for IoT Networks
    Rohini, G.
    Gnana Kousalya, C.
    Bino, J.
    IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 8859 - 8875
  • [35] Reinforcement Learning-Based Generative Security Framework for Host Intrusion Detection
    Kim, Yongsik
    Hong, Su-Youn
    Park, Sungjin
    Kim, Huy Kang
    IEEE ACCESS, 2025, 13 : 15346 - 15362
  • [36] A Deep Learning-based Framework for Vehicle License Plate Detection
    Yang, Deming
    Yang, Ling
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1009 - 1018
  • [37] Effective intrusion detection model through the combination of a signature-based intrusion detection system and a machine learning-based intrusion detection system
    Weon, Ill-Young
    Song, Doo Heon
    Lee, Chang-Hoon
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1447 - 1464
  • [38] Deep Learning-Based Intrusion Detection System for Internet of Vehicles
    Ahmed, Imran
    Jeon, Gwanggil
    Ahmad, Awais
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (01) : 117 - 123
  • [39] Machine Learning-Based Intrusion Detection System For Healthcare Data
    Balyan, Amit Kumar
    Ahuja, Sachin
    Sharma, Sanjeev Kumar
    Lilhore, Umesh Kumar
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 290 - 294
  • [40] Effectiveness of an Adaptive Deep Learning-Based Intrusion Detection System
    Villegas-Ch, William
    Govea, Jaime
    Gutierrez, Rommel
    Navarro, Alexandra Maldonado
    Mera-Navarrete, Aracely
    IEEE ACCESS, 2024, 12 : 184010 - 184027