A short-term power load forecasting system based on data decomposition, deep learning and weighted linear error correction with feedback mechanism

被引:2
|
作者
Dong, Zhaochen [1 ]
Tian, Zhirui [2 ]
Lv, Shuang [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
关键词
Load forecast; Data preprocessing; Deep learning; Meta-heuristic optimization algorithm; HYBRID; MODEL;
D O I
10.1016/j.asoc.2024.111863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular characteristics, which posing great challenges for accurate load forecasting. In order to solve above problem, a novel power load forecasting system is proposed based on data denoising, customized deep learning and weighted linear error correction. Specifically, we first proposed an improved optimization algorithm IGWO-JAYA which enhanced the Grey Wolf Optimizer (GWO) algorithm by using Halton low-discrepancy sequence and the mechanism of JAYA algorithm. In data denoising, the proposed optimizer was employed to optimize the Variational Mode Decomposition (VMD), enabling data-driven intelligent denoising. The customized deep learning framework contained multilayer Convolution Neural Network (CNN), Bi-directional Long Short-Term Memory (Bi-LSTM) and MultiHead Attention mechanism. The effective integration of these layers can significantly improve the capacity for nonlinear fitting of deep learning. In weighted linear error correction, the IGWO-JAYA algorithm was employed to determine the appropriate weight for point forecasting values and residual forecasting values. By weighting them, the forecasting precision has been further enhanced. To verify the forecasting ability of the system, we conducted experiments on power load datasets from four states in Australia and found that it has the best performance compared with all rivals. In the discussion, we demonstrated the convergence efficiency of the IGWO-JAYA algorithm by CEC test function.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Hybrid System Based on LSTM for Short-Term Power Load Forecasting
    Jin, Yu
    Guo, Honggang
    Wang, Jianzhou
    Song, Aiyi
    ENERGIES, 2020, 13 (23)
  • [42] A Short-term Load Forecasting Based On Fuzzy Identification In Power System
    Liang Yu
    Wang Na
    Fan Li-ping
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL III, 2010, : 197 - 199
  • [43] The Research of Power System Short-term Load Forecasting
    Yi, Jie
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MACHINERY, ELECTRONICS AND CONTROL SIMULATION (MECS 2017), 2017, 138 : 332 - 335
  • [44] Deep learning time pattern attention mechanism-based short-term load forecasting method
    Liao, Wei
    Ruan, Jiaqi
    Xie, Yinghua
    Wang, Qingwei
    Li, Jing
    Wang, Ruoyu
    Zhao, Junhua
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [45] Short-Term Load Forecasting of Integrated Energy Systems Based on Deep Learning
    Huan, Jiajia
    Hong, Haifeng
    Pan, Xianxian
    Sui, Yu
    Zhang, Xiaohui
    Jiang, Xuedong
    Wang, Chaoqun
    2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), 2020, : 16 - 20
  • [46] Short-Term Load Forecasting Based on VMD and Combined Deep Learning Model
    Wang, Nier
    Xue, Sheng
    Li, Zhanming
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 18 (07) : 1067 - 1075
  • [47] Ensemble deep learning method for short-term load forecasting
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 86 - 90
  • [48] Short-Term Power Load Forecasting Based on SVM
    Ye, Ning
    Liu, Yong
    Wang, Yong
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [49] Forecasting very short-term wind power generation using deep learning, optimization and data decomposition techniques
    Hossain, Md Alamgir
    Gray, Evan MacA
    Islam, Md Rabiul
    Chakrabortty, Ripon K.
    Pota, Hemanshu R.
    2021 24TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2021), 2021, : 323 - 327
  • [50] Wind Power Short-Term Forecasting Method Based on LSTM and Multiple Error Correction
    Xiao, Zhengxuan
    Tang, Fei
    Wang, Mengyuan
    SUSTAINABILITY, 2023, 15 (04)