Remote Sensing Image Pansharpening Using Deep Internal Learning With Residual Double-Attention Network

被引:0
|
作者
Sustika, Rika [1 ,2 ]
Suksmono, Andriyan B. [1 ,3 ,4 ]
Danudirdjo, Donny [1 ]
Wikantika, Ketut [5 ]
机构
[1] Bandung Inst Technol, Sch Elect Engn & Informat, Bandung 40132, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Res Ctr Artificial Intelligence & Cybersecur, Bandung 40135, Indonesia
[3] ITB Res Ctr ICT PPTIK ITB, Bandung 40132, Indonesia
[4] STEI ITB, Res Collaborat Ctr Quantum Technol 2 0, Bandung 40132, Indonesia
[5] Bandung Inst Technol, Fac Earth Sci & Technol, Bandung 40132, Indonesia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Pansharpening; Feature extraction; Spatial resolution; Superresolution; Training; Testing; Supervised learning; Remote sensing; Image reconstruction; Convolutional neural networks; Channel attention; deep internal learning; multispectral; pansharpening; residual; spatial attention; QUALITY ASSESSMENT; FUSION; RESOLUTION; RATIO; MS;
D O I
10.1109/ACCESS.2024.3481466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, deep convolutional neural networks (CNNs) have significantly improved pansharpening performance compared to traditional methods. However, existing CNN-based methods for pansharpening still lack spatial detail and suffer from spectral distortion. To address this problem, this study proposed a deep learning network based on channel and spatial attention mechanisms to enhance the spatial resolution and decrease the spectral distortion of a pansharpened image. The proposed network consists of a shallow feature extraction (SFE) unit to exploit the spatial and spectral features of the panchromatic (PAN) and multispectral (MS) input images. Furthermore, a double-attention feature fusion (DAFF) module, which consists of residual double-attention modules (RDAMs) with long and short skip connections, was designed to improve the spatial resolution and alleviate the spectral distortion of the output image. In the experiments, we utilized a deep internal learning strategy in which training data were extracted from a large scene of the observed image itself. We evaluated the effectiveness of the proposed method using WorldView-3, Spot-7, Pleiades, and Geoeye datasets. The performance of the proposed method was compared with some existing deep learning-based pansharpening techniques: deep residual pansharpening neural network (DRPNN), residual network (ResNet), residual dense model for pansharpening network (RDMPSnet), symmetric skipped connection convolutional neural network (SSC-CNN), and triplet attention network with information interaction (TANI). The experimental results revealed that the proposed method outperformed all the other methods in terms of quality evaluation metrics and visualization.
引用
收藏
页码:162285 / 162298
页数:14
相关论文
共 50 条
  • [31] Adaptive scene-aware deep attention network for remote sensing image compression
    Zhai, Guowei
    Liu, Gang
    He, Xiaohai
    Wang, Zhengyong
    Ren, Chao
    Chen, Zhengxin
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (05)
  • [32] Dual Residual Attention Network for ICMOS Sensing Image
    Wang Xia
    Zhang Xin
    Jiao Gangcheng
    Yang Ye
    Cheng Hongchang
    Yan Bo
    ACTA PHOTONICA SINICA, 2022, 51 (06)
  • [33] DAGAN: A GAN Network for Image Denoising of Medical Images Using Deep Learning of Residual Attention Structures
    Tong, Guoxiang
    Hu, Fangning
    Liu, Hongjun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (02)
  • [34] Deep Learning for Remote Sensing Image Understanding
    Zhang, Liangpei
    Xia, Gui-Song
    Wu, Tianfu
    Lin, Liang
    Tai, Xue Cheng
    JOURNAL OF SENSORS, 2016, 2016
  • [35] Context Residual Attention Network for Remote Sensing Scene Classification
    Wang, Yuhua
    Hu, Yaxin
    Xu, Yuezhu
    Jiao, Peiyuan
    Zhang, Xiangrong
    Cui, Huanyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] A Unified Deep Learning Network for Remote Sensing Image Registration and Change Detection
    Zhou, Rufan
    Quan, Dou
    Wang, Shuang
    Lv, Chonghua
    Cao, Xianwei
    Chanussot, Jocelyn
    Li, Yi
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [37] Deep Residual Attention Network for Hyperspectral Image Reconstruction
    Kohei, Yorimoto
    Han, Xian-Hua
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8547 - 8553
  • [38] Remote Sensing Image Classification Using Deep-Shallow Learning
    Dou, Peng
    Shen, Huanfeng
    Li, Zhiwei
    Guan, Xiaobin
    Huang, Wenli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3070 - 3083
  • [39] Remote Sensing Image Super-Resolution using Deep Learning
    Rajeshwari, P.
    Priya, Pamujula Lakshmi
    Pooja, M.
    Abhishek, G.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 665 - 668
  • [40] Research Trend of the Remote Sensing Image Analysis Using Deep Learning
    Kim, Hyungwoo
    Kim, Minho
    Lee, Yangwon
    KOREAN JOURNAL OF REMOTE SENSING, 2022, -38 (05) : 819 - 834