PhaseNet: A Deep Learning Based Phase Reconstruction Method for Ground-Based Astronomy

被引:0
|
作者
Zheng, Dihan [1 ]
Tang, Shiqi [2 ]
Wagner, Roland [3 ]
Ramlau, Ronny [3 ,4 ]
Bao, Chenglong [1 ,5 ]
Chan, Raymond H. [2 ,6 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[3] Johannes Kepler Univ Linz, Ind Math Inst, A-4040 Linz, Austria
[4] Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[5] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[6] Hong Kong Ctr Cerebro Cardiovasc Hlth Engn, Hong Kong Sci Pk, Hong Kong, Peoples R China
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2024年 / 17卷 / 03期
基金
中国国家自然科学基金; 奥地利科学基金会; 国家重点研发计划;
关键词
image deconvolution; astronomical imaging; machine learning; deep unrolling method; WAVE-FRONT RECONSTRUCTION; SENSOR; DECONVOLUTION; COMPUTATION; ALGORITHM;
D O I
10.1137/23M1592377
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ground-based astronomy utilizes modern telescopes to obtain information on the universe by analyzing recorded signals. Due to atmospheric turbulence, the reconstruction process requires solving a deconvolution problem with an unknown point spread function (PSF). The crucial step in PSF estimation is to obtain a high-resolution phase from low-resolution phase gradients, which is a challenging problem. In this paper, when multiple frames of low-resolution phase gradients are available, we introduce PhaseNet, a deep learning approach based on the Taylor frozen flow hypothesis. Our approach incorporates a data-driven residual regularization term, of which the gradient is parameterized by a network, into the Laplacian regularization based model. To solve the model, we unroll the Nesterov accelerated gradient algorithm so that the network can be efficiently and effectively trained. Finally, we evaluate the performance of PhaseNet under various atmospheric conditions and demonstrate its superiority over TV and Laplacian regularization based methods.
引用
收藏
页码:1511 / 1538
页数:28
相关论文
共 50 条
  • [21] The Human Orrery: Ground-based astronomy for all
    Bailey, M
    Asher, D
    Christou, A
    ASTRONOMY & GEOPHYSICS, 2005, 46 (03) : 31 - 35
  • [22] The impact of satellite constellations on ground-based astronomy
    Bruno, Sarah Marie
    MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY X, 2022, 12187
  • [23] Neural nets for ground-based γ-ray astronomy
    Maneva, GM
    Procureur, J
    Temnikov, PP
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 502 (2-3): : 789 - 791
  • [24] Ground-based gamma-ray astronomy
    Hillas, AM
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 1996, 19 (05): : 701 - 712
  • [25] Uncooled microbolometer arrays for ground-based astronomy
    Rashman, M. F.
    Steele, I. A.
    Bates, S. D.
    Copley, D.
    Longmore, S. N.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (01) : 480 - 487
  • [26] Status of ground-based gamma ray astronomy
    Hofmann, W
    HIGH ENERGY GAMMA-RAY ASTRONOMY, 2005, 745 : 246 - 259
  • [27] Ground-based gamma-ray astronomy
    Acta Phys Pol Ser B, 7 (2293-2308):
  • [28] Ground-based gamma-ray astronomy
    de Jager, OC
    ACTA PHYSICA POLONICA B, 1999, 30 (07): : 2293 - 2308
  • [29] Ground-based gamma-ray astronomy
    Catanese, M
    FIFTH COMPTON SYMPOSIUM, 2000, 510 : 619 - 626
  • [30] Time-domain Deep-learning Filtering of Structured Atmospheric Noise for Ground-based Millimeter Astronomy
    Rocha-Solache, Alejandra
    Rodriguez-Montoya, Ivan
    Sanchez-Arguelles, David
    Aretxaga, Itziar
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2022, 260 (01):