COMPREHENSIVE REVIEW OF AUTOMATIC TEXT SUMMARIZATION TECHNIQUES

被引:0
|
作者
Cajueiro, Daniel O. [1 ,2 ,3 ]
Nery, Arthur G. [1 ,3 ]
Tavares, Igor [4 ]
De Melo, Maisa K. [3 ,5 ]
Dos Reis, Silvia A. [6 ]
Weigang, Li [7 ]
Celestino, Victor R. R. [3 ,6 ]
机构
[1] Univ Brasilia UnB, Dept Econ, Brasilia, Brazil
[2] Univ Brasilia UnB, Nacl Inst Sci & Technol Complex Syst INCT SC, Brasilia, Brazil
[3] Univ Brasilia UnB, Machine Learning Lab Finance & Org LAMFO, Brasilia, Brazil
[4] Univ Brasilia UnB, Mech Engn Dept, Brasilia, Brazil
[5] Inst Fed Minas Gerais, Dept Math, Belo Horizonte, Brazil
[6] Univ Brasilia UnB, Business Dept, Brasilia, Brazil
[7] Univ Brasilia UnB, Comp Sci Dept, Brasilia, Brazil
关键词
Machine learning; natural language processing; summarization; ABSTRACTS;
D O I
10.31577/cai2024_5_1185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic Text Summarization (ATS) is a fundamental aspect of Natural Language Processing (NLP) that allows for the conversion of lengthy text documents into concise summaries that retain the essential information based on specific criteria. In this paper, we present a literature review on the topic of ATS, which includes an overview of the various approaches to ATS, categorized by the mechanisms they use to generate a summary. By organizing these approaches based on their underlying mechanisms, we provide a comprehensive understanding of the current state-of-the-art in ATS systems.
引用
收藏
页码:1185 / 1218
页数:34
相关论文
共 50 条
  • [21] Machine Learning-Based Automatic Text Summarization Techniques
    Radhakrishnan P.
    Senthil kumar G.
    SN Computer Science, 4 (6)
  • [22] Improving Automatic Image Captioning Using Text Summarization Techniques
    Plaza, Laura
    Lloret, Elena
    Aker, Ahmet
    TEXT, SPEECH AND DIALOGUE, 2010, 6231 : 165 - +
  • [23] A Survey of Automatic Text Summarization Techniques for Indian and Foreign Languages
    Shah, Prachi
    Desai, Nikita P.
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 4598 - 4601
  • [24] From task to evaluation: an automatic text summarization review
    Lingfeng Lu
    Yang Liu
    Weiqiang Xu
    Huakang Li
    Guozi Sun
    Artificial Intelligence Review, 2023, 56 : 2477 - 2507
  • [25] From task to evaluation: an automatic text summarization review
    Lu, Lingfeng
    Liu, Yang
    Xu, Weiqiang
    Li, Huakang
    Sun, Guozi
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) : 2477 - 2507
  • [26] Automatic Text Summarization: A State-of-the-Art Review
    Klymenko, Oleksandra
    Braun, Daniel
    Matthes, Florian
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, 2020, : 648 - 655
  • [27] Comprehensive and Evolution Study Focusing on Comparative Analysis of Automatic Text Summarization
    Patel, Rima
    Thakkar, Amit
    Makwana, Kamlesh
    Patel, Jay
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS (ICTIS 2017) - VOL 2, 2018, 84 : 383 - 389
  • [28] A Systematic Review on Text Summarization: Techniques, Challenges, Opportunities
    Sharma, Kanta Prasad
    Yajid, Mohd Shukri Ab
    Gowrishankar, J.
    Mahajan, Rohini
    Alsoud, Anas Ratib
    Jadhav, Abhilasha
    Singh, Devendra
    EXPERT SYSTEMS, 2025, 42 (04)
  • [29] Evaluation of Automatic Legal Text Summarization Techniques for Greek Case Law
    Koniaris, Marios
    Galanis, Dimitris
    Giannini, Eugenia
    Tsanakas, Panayiotis
    INFORMATION, 2023, 14 (04)
  • [30] Automatic Text Summarization and Classification
    Simske, Steven J.
    Lins, Rafael
    PROCEEDINGS OF THE ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG 2018), 2018,