Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams

被引:0
|
作者
Yalcin, Muhammet Muaz [1 ]
机构
[1] Sakarya Univ, Dept Mech Engn, TR-54050 Serdivan, Turkiye
关键词
3-point bending; cubic lattice topology; octet lattice topology; energy absorption performance; chopped carbon fiber reinforced;
D O I
10.3390/polym16212991
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study investigates the flexural behavior of 3D-printed multi-topology lattice beams, with a specific emphasis on octet and cube lattice geometries created through fused deposition modeling (FDM). The mechanical properties of these beams were evaluated through quasi-static three-point bending tests. A comparative analysis of load-carrying capacity, energy absorption, and specific energy absorption (SEA) indicates that octet lattice beams exhibit superior performance to cube lattice beams. The octet lattice beam in the triple-layer double-column (TL-DC) arrangement absorbed 14.99 J of energy, representing a 38% increase compared to the 10.86 J absorbed by the cube lattice beam in the same design. The specific energy absorption (SEA) of the octet beam was measured at 0.39 J/g, which exceeds the 0.29 J/g recorded for the cube beam. Two distinct types of deformations were identified for the struts and the beam layers. Octet struts exhibit enhanced performance in stretch-dominated zones, whereas the cube system demonstrates superior efficacy in compressive-dominated regions. The results highlight the enhanced efficacy of octet lattice structures in energy absorption and mechanical stability maintenance. The investigation of sandwich lattice topologies integrating octet and cube structures indicates that while hybrid designs may exhibit efficiency, uniform octet structures yield superior performance. This study provides valuable insights into the structural design and optimization of lattice systems for applications requiring high-energy absorption and mechanical robustness.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic
    Dutra, Thiago Assis
    Luiz Ferreira, Rafael Thiago
    Resende, Hugo Borelli
    Guimaraes, Alessandro
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (03)
  • [22] Fracture behavior of 3D printed carbon fiber-reinforced polymer composites
    Yavas, Denizhan
    Zhang, Ziyang
    Liu, Qingyang
    Wu, Dazhong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 208
  • [23] Flexural behavior of concrete beams hybrid-reinforced with glass fiber-reinforced polymer, carbon fiber-reinforced polymer, and steel rebars
    Terzioglu, Hilal
    Yildirim, Meltem Eryilmaz
    Karagoz, Omer
    Unluoglu, Esref
    Dogan, Mizan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (05) : 775 - 795
  • [24] Delamination analysis of 3D-printed nylon reinforced with continuous carbon fibers
    Polyzos, E.
    Katalagarianakis, A.
    Van Hemelrijck, D.
    Pyl, L.
    ADDITIVE MANUFACTURING, 2021, 46
  • [25] Flexural Behavior of Fiber-Reinforced SCC for Monolithic and Composite Beams
    Kassimi, Fodhil
    El-Sayed, Ahmed Kamal
    Khayat, Kamal Henri
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2021, 19 (08) : 937 - 949
  • [26] Flexural behavior of natural fiber-reinforced foamed concrete beams
    Kusum Saini
    Saverio Spadea
    Vasant A. Matsagar
    Architecture, Structures and Construction, 2024, 4 (2-4): : 157 - 172
  • [27] Optimization of Production Parameters for Impact Strength of 3D-Printed Carbon/Glass Fiber-Reinforced Nylon Composite in Critical ZX Printing Orientation
    Hartomacioglu, Selim
    POLYMERS, 2024, 16 (21)
  • [28] Flexural Behavior of Carbon Fiber-Reinforced Polymer Partially Bonded Reinforced Concrete Beams with Different Methods
    Cao, Qi
    Wang, Xingchao
    Wu, Zhimin
    Gao, Rongxiong
    Jiang, Xin
    ACI STRUCTURAL JOURNAL, 2024, 121 (01) : 61 - 74
  • [29] Mechanical and Thermal Properties of Multilayer-Coated 3D-Printed Carbon Fiber Reinforced Nylon Composites
    Chen, Hongwei
    Wang, Kaibao
    Chen, Yao
    Le, Huirong
    JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (07):
  • [30] 3D printing with tension and compaction: prevention of fiber waviness in 3D-printed continuous carbon fiber-reinforced thermoplastics
    Ichihara, Naruki
    Ueda, Masahito
    Kajiwara, Kentaro
    Le Duigou, Antoine
    Castro, Mickael
    ADVANCED COMPOSITE MATERIALS, 2024, 33 (03) : 377 - 387