Efficient deep learning models based on tension techniques for sign language recognition

被引:2
|
作者
Attia, Nehal F. [1 ,2 ]
Ahmed, Mohamed T. Faheem Said [1 ]
Alshewimy, Mahmoud A. M. [1 ]
机构
[1] Tanta Univ, Fac Engn, Comp & Automat Control Dept, Tanta, Egypt
[2] Pharos Univ, Fac Engn, Comp Engn Dept, Alexandria, Egypt
来源
关键词
American sign language (ASL); YOLOv5; Object recognition; Computer vision; Convolutional block attention module (CBAM); Squeeze-and-excitation (SE); NEURAL-NETWORKS;
D O I
10.1016/j.iswa.2023.200284
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Communication by speaking prevails among the various ways of self-expression and communication between people. Speech presents a significant challenge for some disabled people, such as deaf people, deaf and hard of hearing, dumb and wordless persons. Therefore, these people rely on sign language to interact with others. Sign language is a system of movements and visual messages that ensure the integration of these individuals into groups that communicate vocally. On the other side, it is necessary to understand these individuals' gestures and linguistic semantics. The main objective of this work is to establish a new model that enhances the performance of the existing paradigms used for sign language recognition. This study developed three improved deep-learning models based on YOLOv5x and attention methods for recognizing the alphabetic and numeric information hand gestures convey. These models were evaluated using the MU HandImages ASL and OkkhorNama: BdSL datasets. The proposed models exceed those found in the literature, where the accuracy reached 98.9 % and 97.6 % with the MU HandImages ASL dataset and the OkkhorNama: BdSL dataset, respectively. The proposed models are light and fast enough to be used in real-time ASL recognition and to be deployed on any edge-based platform.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Machine Learning Models Applied in Sign Language Recognition
    Novillo Quinde, Esteban Gustavo
    Saldana Torres, Juan Pablo
    Alvarez Valdez, Michael Andres
    Llivicota Leon, John Santiago
    Hurtado Ortiz, Remigio Ismael
    PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 263 - 272
  • [32] A Model for Qur'anic Sign Language Recognition Based on Deep Learning Algorithms
    AbdElghfar, Hany A. A.
    Ahmed, Abdelmoty M. M.
    Alani, Ali A. A.
    AbdElaal, Hammam M.
    Bouallegue, Belgacem
    Khattab, Mahmoud M.
    Tharwat, Gamal
    Youness, Hassan A. A.
    JOURNAL OF SENSORS, 2023, 2023
  • [33] Deep learning-based sign language recognition system for static signs
    Ankita Wadhawan
    Parteek Kumar
    Neural Computing and Applications, 2020, 32 : 7957 - 7968
  • [34] Deep Learning-Based Sign Language Recognition System for Cognitive Development
    Maher Jebali
    Abdesselem Dakhli
    Wided Bakari
    Cognitive Computation, 2023, 15 : 2189 - 2201
  • [35] A sensing data and deep learning-based sign language recognition approach
    Hao, Wei
    Hou, Chen
    Zhang, Zhihao
    Zhai, Xueyu
    Wang, Li
    Lv, Guanghao
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [36] Indian Sign Language Recognition Using Machine Learning Techniques
    Sahoo, Ashok Kumar
    MACROMOLECULAR SYMPOSIA, 2021, 397 (01)
  • [37] Traffic sign recognition based on deep learning
    Yanzhao Zhu
    Wei Qi Yan
    Multimedia Tools and Applications, 2022, 81 : 17779 - 17791
  • [38] Sign Language Recognition with Multimodal Sensors and Deep Learning Methods
    Lu, Chenghong
    Kozakai, Misaki
    Jing, Lei
    ELECTRONICS, 2023, 12 (23)
  • [39] Development of Sign Language Recognition Application Using Deep Learning
    Rajalakshmi, N. R.
    NEXT GENERATION OF INTERNET OF THINGS, 2023, 445 : 299 - 308
  • [40] Arabic Sign Language Recognition Using Deep Machine Learning
    Suliman, Wael
    Deriche, Mohamed
    Luqman, Hamzah
    Mohandes, Mohamed
    2021 4TH INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2021,