Computation Offloading Optimization in Satellite-Terrestrial Integrated Networks via Offline Deep Reinforcement Learning

被引:0
|
作者
Xie, Bo [1 ]
Cui, Haixia [1 ]
Cao, Peng [1 ]
He, Yejun [2 ]
Guizani, Mohsen [3 ]
机构
[1] South China Normal Univ, Sch Elect & Informat Engn, Foshan 528225, Peoples R China
[2] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[3] Mohamed Bin Zayed Univ Artificial Intelligence, Machine Learning Dept, Abu Dhabi, U Arab Emirates
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 23期
基金
中国国家自然科学基金;
关键词
Satellites; Low earth orbit satellites; Delays; Energy consumption; Real-time systems; Planetary orbits; Internet of Things; Offline deep reinforcement learning (offline DRL); satellite-terrestrial integrated networks (STINs); soft actor-critic (SAC); task offloading;
D O I
10.1109/JIOT.2024.3455319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the demand for global Internet connectivity continues to grow, the satellite-terrestrial integrated networks (STINs) have become more and more crucial for expanding the service coverage and enhancing the network performance. However, the task offloading problem in STINs faces many significant challenges, such as high processing latency and energy consumption. The current intelligent offloading strategies often rely on the real-time interactions with the environments which not only consume valuable satellite resources but also cause irreversible damage to the satellite equipment due to some operational errors. To address these issues, in this article, we propose an offline deep reinforcement learning (offline DRL) approach to learn and optimize the task offloading decisions by leveraging the stored historical decision data and employing the soft actor-critic (SAC) algorithm specifically. Experimental results show that the proposed strategy outperforms most of the existing methods in terms of latency and energy consumption and effectively reduces the direct interactions with STINs.
引用
收藏
页码:38803 / 38814
页数:12
相关论文
共 50 条
  • [41] Integrated satellite-terrestrial networks in future wireless systems
    Guidotti, Alessandro
    Evans, Barry
    Di Renzo, Marco
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2019, 37 (02) : 73 - 75
  • [42] ReViNE: Reinforcement Learning-Based Virtual Network Embedding in Satellite-Terrestrial Networks
    Maity, Ilora
    Vu, Thang X.
    Chatzinotas, Symeon
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (10) : 6316 - 6327
  • [43] Network Simulators for Satellite-Terrestrial Integrated Networks: A Survey
    Jiang, Weiwei
    Zhan, Yafeng
    Xiao, Xiaolong
    Sha, Guanglin
    IEEE ACCESS, 2023, 11 : 98269 - 98292
  • [44] Vehicular Edge Computing in Satellite-Terrestrial Integrated Networks
    Li, Caiguo
    Shang, Bodong
    Feng, Jie
    Liu, Lei
    Chen, Shanzhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,
  • [45] Cooperative Multi-Agent Deep Reinforcement Learning for Computation Offloading in Digital Twin Satellite Edge Networks
    Ji, Zhe
    Wu, Sheng
    Jiang, Chunxiao
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (11) : 3414 - 3429
  • [46] Cooperative Multi-Agent Deep Reinforcement Learning for Computation Offloading in Digital Twin Satellite Edge Networks
    Ji, Zhe
    Wu, Sheng
    Jiang, Chunxiao
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3414 - 3429
  • [47] Delay Optimization for Cooperative Multi-Tier Computing in Integrated Satellite-Terrestrial Networks
    Zhu, Xiangming
    Jiang, Chunxiao
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (02) : 366 - 380
  • [48] Joint Optimization of Server and Service Selection in Satellite-Terrestrial Integrated Edge Computing Networks
    Gao, Yufang
    Yan, Zhibo
    Zhao, Kanglian
    de Cola, Tomaso
    Li, Wenfeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (02) : 2740 - 2754
  • [49] Max Completion Time Optimization for Internet of Things in LEO Satellite-Terrestrial Integrated Networks
    Gao, Zhixiang
    Liu, Aijun
    Han, Chen
    Liang, Xiaohu
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12): : 9981 - 9994
  • [50] Computation Offloading for Integrated Satellite-Terrestrial Internet of Vehicles in 6G Edge Network: A Cooperative Stackelberg Game
    Chai, Zheng-Yi
    Kang, Hong-Shen
    Li, Ya-Lun
    Zhao, Ying-Jie
    Huang, Hao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 10389 - 10404