An Autonomous Attack Decision-Making Method Based on Hierarchical Virtual Bayesian Reinforcement Learning

被引:1
|
作者
Wang, Dinghan [1 ]
Zhang, Jiandong [1 ]
Yang, Qiming [1 ]
Liu, Jieling [2 ]
Shi, Guoqing [1 ]
Zhang, Yaozhong [1 ]
机构
[1] Northwestern Polytech Univ, Xian 710072, Peoples R China
[2] Xian North Electroopt Sci & Technol Def Co Ltd, Xian 710043, Peoples R China
关键词
Missiles; Heuristic algorithms; Aircraft; Aerodynamics; Atmospheric modeling; Reinforcement learning; Decision making; Bayesian; reinforcement learning; self-play; six-degree-of-freedom (6-DOF); COMBAT;
D O I
10.1109/TAES.2024.3410249
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In response to the challenges of estimating missile launch timing during close-range unmanned autonomous air combat in the future, this article proposes an autonomous attack decision-making method based on hierarchical virtual Bayesian reinforcement learning (HVBRL). First, a six-degree-of-freedom (6-DOF) high-fidelity aircraft dynamics model, along with missile dynamics and guidance rate models, is constructed. Second, the HVBRL algorithm is introduced, where the low-level algorithm outputs control parameters and the high-level algorithm generates control commands. Given that the number of missile hits on a target under specific conditions follows a binomial distribution, a simple prior knowledge can be introduced through its conjugate prior, the Beta distribution, to avoid prolonged exploration of ineffective areas. Moreover, carrying only a limited number of missiles and predicting the number of hits by multiple virtual missiles in specific states through a neural network circumvent the computational complexity issue associated with carrying an excessive number of missiles. Finally, this article presents the low-level training algorithm, the high-level training algorithm, and the high-level self-play training algorithm. Experimental results show that our method significantly reduces the simulation computational complexity. Compared with the Monte Carlo method carrying 1000 missiles, the simulation speed of the high-level training algorithm is increased by 32.75 times, and that of the high-level self-play algorithm is increased by 23 times. Moreover, the estimated missile hit probability with bias can effectively guide the timing of missile launches in close-range air combat, which has significant implications for intelligent autonomous air combat decision-making and operational analysis.
引用
收藏
页码:7075 / 7088
页数:14
相关论文
共 50 条
  • [21] Cognitive Reinforcement Learning: An Interpretable Decision-Making for Virtual Driver
    Qi, Hao
    Hou, Enguang
    Ye, Peijun
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2024, 8 : 627 - 631
  • [22] UAVs Maneuver Decision-Making Method Based on Transfer Reinforcement Learning
    Zhu, Jindong
    Fu, Xiaowei
    Qiao, Zhe
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022 : 2399796
  • [23] A UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on Deep Reinforcement Learning
    Li, Ke
    Zhang, Kun
    Zhang, Zhenchong
    Liu, Zekun
    Hua, Shuai
    He, Jianliang
    SENSORS, 2021, 21 (06)
  • [24] Deep Reinforcement Learning Based Game-Theoretic Decision-Making for Autonomous Vehicles
    Yuan, Mingfeng
    Shan, Jinjun
    Mi, Kevin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 818 - 825
  • [25] Towards Robust Decision-Making for Autonomous Highway Driving Based on Safe Reinforcement Learning
    Zhao, Rui
    Chen, Ziguo
    Fan, Yuze
    Li, Yun
    Gao, Fei
    SENSORS, 2024, 24 (13)
  • [26] Decision-Making Models for Autonomous Vehicles at Unsignalized Intersections Based on Deep Reinforcement Learning
    Xu, Shu-Yuan
    Chen, Xue-Mei
    Wang, Zi-Jia
    Hu, Yu-Hui
    Han, Xin-Tong
    2022 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2022), 2022, : 672 - 677
  • [27] Driver-like decision-making method for vehicle longitudinal autonomous driving based on deep reinforcement learning
    Gao, Zhenhai
    Yan, Xiangtong
    Gao, Fei
    He, Lei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2022, 236 (13) : 3060 - 3070
  • [28] Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation
    Hoel, Carl-Johan
    Wolff, Krister
    Laine, Leo
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1563 - 1569
  • [29] Constraints Driven Safe Reinforcement Learning for Autonomous Driving Decision-Making
    Gao, Fei
    Wang, Xiaodong
    Fan, Yuze
    Gao, Zhenhai
    Zhao, Rui
    IEEE ACCESS, 2024, 12 : 128007 - 128023
  • [30] A reinforcement learning approach to autonomous decision-making in smart electricity markets
    Markus Peters
    Wolfgang Ketter
    Maytal Saar-Tsechansky
    John Collins
    Machine Learning, 2013, 92 : 5 - 39