An Autonomous Attack Decision-Making Method Based on Hierarchical Virtual Bayesian Reinforcement Learning

被引:1
|
作者
Wang, Dinghan [1 ]
Zhang, Jiandong [1 ]
Yang, Qiming [1 ]
Liu, Jieling [2 ]
Shi, Guoqing [1 ]
Zhang, Yaozhong [1 ]
机构
[1] Northwestern Polytech Univ, Xian 710072, Peoples R China
[2] Xian North Electroopt Sci & Technol Def Co Ltd, Xian 710043, Peoples R China
关键词
Missiles; Heuristic algorithms; Aircraft; Aerodynamics; Atmospheric modeling; Reinforcement learning; Decision making; Bayesian; reinforcement learning; self-play; six-degree-of-freedom (6-DOF); COMBAT;
D O I
10.1109/TAES.2024.3410249
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In response to the challenges of estimating missile launch timing during close-range unmanned autonomous air combat in the future, this article proposes an autonomous attack decision-making method based on hierarchical virtual Bayesian reinforcement learning (HVBRL). First, a six-degree-of-freedom (6-DOF) high-fidelity aircraft dynamics model, along with missile dynamics and guidance rate models, is constructed. Second, the HVBRL algorithm is introduced, where the low-level algorithm outputs control parameters and the high-level algorithm generates control commands. Given that the number of missile hits on a target under specific conditions follows a binomial distribution, a simple prior knowledge can be introduced through its conjugate prior, the Beta distribution, to avoid prolonged exploration of ineffective areas. Moreover, carrying only a limited number of missiles and predicting the number of hits by multiple virtual missiles in specific states through a neural network circumvent the computational complexity issue associated with carrying an excessive number of missiles. Finally, this article presents the low-level training algorithm, the high-level training algorithm, and the high-level self-play training algorithm. Experimental results show that our method significantly reduces the simulation computational complexity. Compared with the Monte Carlo method carrying 1000 missiles, the simulation speed of the high-level training algorithm is increased by 32.75 times, and that of the high-level self-play algorithm is increased by 23 times. Moreover, the estimated missile hit probability with bias can effectively guide the timing of missile launches in close-range air combat, which has significant implications for intelligent autonomous air combat decision-making and operational analysis.
引用
收藏
页码:7075 / 7088
页数:14
相关论文
共 50 条
  • [1] A Decision-Making Model for Autonomous Vehicles at Intersections Based on Hierarchical Reinforcement Learning
    Chen, Xue-Mei
    Xu, Shu-Yuan
    Wang, Zi-Jia
    Zheng, Xue-Long
    Han, Xin-Tong
    Liu, En-Hao
    UNMANNED SYSTEMS, 2024, 12 (04) : 641 - 652
  • [2] A DECISION-MAKING METHOD FOR AUTONOMOUS VEHICLES BASED ON SIMULATION AND REINFORCEMENT LEARNING
    Zheng, Rui
    Liu, Chunming
    Guo, Qi
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 362 - 369
  • [3] Reinforcement learning with hierarchical decision-making
    Cohen, Shahar
    Maimon, Oded
    Khmlenitsky, Evgeni
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 3, 2006, : 177 - +
  • [4] A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning
    Gao Z.
    Yan X.
    Gao F.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 969 - 975
  • [5] SRAD: Autonomous Decision-Making Method for UAV Based on Safety Reinforcement Learning
    Xiao, Wenwen
    Luo, Xiangfeng
    Xie, Shaorong
    EXPERT SYSTEMS, 2025, 42 (05)
  • [6] Research on decision-making of autonomous vehicle following based on reinforcement learning method
    Gao, Hongbo
    Shi, Guanya
    Wang, Kelong
    Xie, Guotao
    Liu, Yuchao
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2019, 46 (03): : 444 - 452
  • [7] Research on Autonomous Decision-Making of UCAV Based on Deep Reinforcement Learning
    Wang, Linxiang
    Wei, Hongtao
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 122 - 126
  • [8] Reinforcement Learning Based Overtaking Decision-Making for Highway Autonomous Driving
    Li, Xin
    Xu, Xin
    Zuo, Lei
    2015 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2015, : 336 - 342
  • [9] Reinforcement Learning Decision-Making for Autonomous Vehicles Based on Semantic Segmentation
    Gao, Jianping
    Liu, Ningbo
    Li, Haotian
    Li, Zhe
    Xie, Chengwei
    Gou, Yangyang
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [10] Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning
    Jin L.
    Han G.
    Xie X.
    Guo B.
    Liu G.
    Zhu W.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (04): : 527 - 540