Transition Metals Doped into g-C3N4 via N,O Coordination as Efficient Electrocatalysts for the Carbon Dioxide Reduction Reaction

被引:1
|
作者
Qiu, Haoyang [1 ]
Yang, Huohai [2 ]
Wang, Peng [3 ]
Leng, Manxi [4 ]
Ge, Xingbo [1 ]
Yang, Xu [1 ]
Chen, Xin [1 ]
机构
[1] Southwest Petr Univ, Coll Chem & Chem Engn, Ctr Computat Chem & Mol Simulat, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Sch Petr Engn, Chengdu 610500, Sichuan, Peoples R China
[3] Sichuan Inst Nonmet Salt Ind Geol Survey, Zigong 643000, Sichuan, Peoples R China
[4] Southwest Petr Univ, Sch New Energy & Mat, Nanchong 623300, Peoples R China
基金
中国国家自然科学基金;
关键词
RECAPTURE MECHANISM; METHANOL SYNTHESIS; ATOM CATALYSTS; CO2; REDUCTION; ELECTROREDUCTION; CU/ZNO/AL2O3; ELECTRODES;
D O I
10.1021/acs.langmuir.4c03938
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical carbon dioxide reduction reaction (CO2RR) is a potential and efficient method that can directly convert CO2 into high-value-added chemicals under mild conditions. Owing to the exceptionally high activation barriers of CO2, catalysts play a pivotal role in CO2RR. In this study, the transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) is doped into g-C3N4 with a unique N,O-coordination environment, namely, TM-N1O2/g-C3N4. Herein, the catalytic performance and reaction mechanism for the CO2RR on TM-N1O2/g-C3N4 are systematically investigated by density functional theory methods. Especially, through the calculation of Delta G *H and Delta G *COOH/Delta G *OCHO, the catalysts with preference for the CO2RR over the hydrogen evolution reaction (HER) are selected for further study. Furthermore, Gibbs free energy computation results of each elementary step for the CO2RR on these catalysts indicate that Ti-N1O2/g-C3N4 has significant catalytic activity and selectivity for reducing CO2 to methanol (CH3OH) with the limiting potential (U L) of -0.55 V. Finally, through frontier molecular orbital theory and charge transfer analyses, the introduction of the O atoms illustrates that it is instrumental in regulating the electron distribution of the catalytic active site, thereby improving the catalytic performance. This work provides insight into the design of single-atom catalysts with unique coordination structures for the CO2RR.
引用
收藏
页码:25344 / 25353
页数:10
相关论文
共 50 条
  • [31] Fe/N-doped carbon nanofibers with Fe3O4/Fe2C nanocrystals enchased as electrocatalysts for efficient oxygen reduction reaction
    Li, Mengfei
    Xiao, Zhenyu
    Fan, Lili
    Wang, Fengmei
    Du, Xinxin
    Kang, Zixi
    Fan, Weidong
    Guo, Ziyang
    Sun, Daofeng
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (09) : 2296 - 2303
  • [32] Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite
    Nguyen Thuy Hang
    Zhang, Shaolin
    Yang, Woochul
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 248 : 940 - 948
  • [33] Bromine doped g-C3N4 with enhanced photocatalytic reduction in U(VI)
    Xue, Jinming
    Wang, Bo
    Li, Ziqiang
    Xie, Zongbo
    Le, Zhanggao
    RESEARCH ON CHEMICAL INTERMEDIATES, 2022, 48 (01) : 49 - 65
  • [34] Bromine doped g-C3N4 with enhanced photocatalytic reduction in U(VI)
    Jinming Xue
    Bo Wang
    Ziqiang Li
    Zongbo Xie
    Zhanggao Le
    Research on Chemical Intermediates, 2022, 48 : 49 - 65
  • [35] Single-Atom Anchored g-C3N4 Monolayer as Efficient Catalysts for Nitrogen Reduction Reaction
    Chai, Huadou
    Chen, Weiguang
    Feng, Zhen
    Li, Yi
    Zhao, Mingyu
    Shi, Jinlei
    Tang, Yanan
    Dai, Xianqi
    NANOMATERIALS, 2023, 13 (08)
  • [36] Which is the photocatalytic efficiency better the g-C3N4 on surface or carbon microspheres on surface in carbon microspheres/g-C3N4?
    Jia, Chenhe
    Zhao, Xinyu
    Li, Zhiyong
    Ding, Xuejiao
    Li, Weixia
    Feng, Jing
    Ren, Yueming
    Wei, Tong
    Zhang, Mingyi
    OPTICAL MATERIALS, 2022, 131
  • [37] Co3O4 and CDots nanocrystals on g-C3N4 as a synergetic catalyst for oxygen reduction reaction
    Wang, Huihua
    Yang, Yanmei
    Qu, Tianpeng
    Kang, Zhenhui
    Wang, Deyong
    GREEN PROCESSING AND SYNTHESIS, 2015, 4 (05) : 411 - 419
  • [38] In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: Balance of oxygen between metal oxides and doped g-C3N4
    Uddin, Ahmed
    Rauf, Abdur
    Wu, Tong
    Khan, Rizwan
    Yu, Yalin
    Tan, Ling
    Jiang, Fang
    Chen, Huan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 602 : 261 - 273
  • [39] DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts
    Chen, Xin
    Hu, Rui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) : 15409 - 15416
  • [40] Role of graphitic carbon in g-C3N4 nanoarchitectonics towards efficient photocatalytic reaction kinetics: A review
    Zhang, Xiao
    Yang, Ping
    CARBON, 2024, 216