Synergistic Tribological Effects of Ti3C2T x MXene and ZDDP under Simple Grafting Strategies for Efficient Lubrication

被引:0
|
作者
Liu, Huanchen [1 ,3 ]
Wang, Xiaoyu [1 ]
Zhao, Lehao [1 ]
Yang, Shuyan [3 ]
Zhang, Xia [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Solid Lubricat, Lanzhou Inst Chem Phys, Lanzhou 730000, Peoples R China
[2] Shandong Lab Adv Mat & Green Mfg Yantai, Yantai 264006, Peoples R China
[3] Qingdao Univ Technol, Sch Mech & Automot Engn, Qingdao 266520, Peoples R China
关键词
Ti3C2T x MXene; chemical grafting; ZDDP; synergistic tribologicaleffects; friction and wear; IN-SITU; MECHANISMS; FRICTION; FILMS;
D O I
10.1021/acsami.4c13511
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
MXenes, a novel class of two-dimensional materials, possess exceptional physical and chemical properties, positioning them as promising candidates for lubricant additives. However, their potential is constrained by challenges in dispersion and stability, coupled with a paucity of research on interactions with additives in full-formula oils. In this study, hexadecylphosphonic acid (HDPA) is grafted onto Ti3C2Tx to formulate a polyalkylene glycol dispersion system. The findings reveal that the HDPA-modified Ti3C2Tx (HDPA-Ti3C2) is successfully synthesized, demonstrating superior dispersion stability and notable friction-reduction and antiwear properties. Notably, when combined with zinc dialkyl dithiophosphate (ZDDP), the HDPA-Ti3C2/ZDDP composite additive outperforms single additives in tribological performance, suggesting synergistic effects between them. This enhanced performance may be attributed to the formation of an amorphous polyphosphate tribofilm offering wear resistance, followed by the generation of a TiO2 tribofilm that further safeguards and repairs the worn surface, thereby enhancing the load-bearing capacity. Concurrently, the interlayer sliding mechanism of nanosheets, which substitutes the relative motion of the friction pair, reduces friction under boundary lubrication, ensuring prolonged effective lubrication. This work broadens the application prospects of Ti3C2Tx MXene for the design and development of commercial lubricating additives.
引用
收藏
页码:59096 / 59108
页数:13
相关论文
共 50 条
  • [41] High-temperature stability and phase transformations of titanium carbide (Ti3C2T x ) MXene
    Wyatt, Brian C.
    Nemani, Srinivasa Kartik
    Desai, Krishay
    Kaur, Harpreet
    Zhang, Bowen
    Anasori, Babak
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (22)
  • [42] High-Performance Ti3C2T x -MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights
    Parasnis, Mruganka Sandip
    Fu, Yu
    Deng, Erda
    Butler, Anthony
    Chen, Chu Te
    Dias, Ruveen
    Lin, Haiqing
    Yao, Fei
    Nalam, Prathima C.
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (05) : 7838 - 7848
  • [43] Synergistic Effect of TiS3 and Ti3C2T x MXene for Temperature-Tunable p-/n-Type Gas Sensing
    Loes, Michael J.
    Bagheri, Saman
    Vorobeva, Nataliia S.
    Abourahma, Jehad
    Sinitskii, Alexander
    ACS APPLIED NANO MATERIALS, 2023, 6 (11) : 9226 - 9235
  • [44] Functionalized Ti3C2T x MXene Nanosheets for Increased Emulsion Viscosity and Enhanced Heavy Oil Recovery
    He, Lei
    Wang, Lei
    Yang, Lutao
    Cui, Juqing
    Jiang, Xuefeng
    Ge, Yanrong
    Zhang, Jun
    Yang, Jie
    Hou, Qingfeng
    Shen, Jian
    ACS APPLIED NANO MATERIALS, 2024, 7 (12) : 14769 - 14779
  • [45] Probing Thermal Transport on a Suspended Ti3C2T x MXene Film via a Photothermally Actuated Resonator
    Wan, Zhen
    Li, Cheng
    Liu, Ronghui
    Zhou, Wei
    Fan, Wenjing
    Huang, Chuanxue
    Liu, Yang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4999 - 5008
  • [46] Inkjet-Printing Ti3C2T x MXene Nanosheet-Based Metamaterials for Terahertz Absorption
    Huang, Weibo
    Liu, Xuebin
    Zhou, Yuanzhi
    Yang, Shaodian
    Huang, Weiqiang
    Chen, Zibo
    Feng, Jiyong
    Chen, Zimin
    Li, Xinming
    Gui, Xuchun
    ACS APPLIED NANO MATERIALS, 2024, 7 (13) : 15308 - 15316
  • [47] High electrochemical performance of Ni-foam supported Ti3C2T x MXene/rGO nanocomposite
    Shen, Yaoguo
    Wu, Lin
    Zhou, Yingwu
    Lin, Hong
    Zhang, Cheng
    Yu, Hualiang
    Wang, Jun
    Yu, Lei
    NANOTECHNOLOGY, 2021, 32 (37)
  • [48] Anisotropic Plasmon Resonance in Ti3C2T x MXene Enables Site-Selective Plasmonic Catalysis
    Wu, Zhiyi
    Shen, Jiahui
    Li, Zimu
    Liu, Shuang
    Zhou, Yuxuan
    Feng, Kai
    Zhang, Binbin
    Zhao, Shiqi
    Xue, Di
    He, Jiari
    Yu, Kewei
    Zhang, Jinpan
    Dawson, Graham
    Zhang, Qingfeng
    Huang, Lizhen
    Li, Chaoran
    An, Xingda
    Chi, Lifeng
    Zhang, Xiaohong
    He, Le
    ACS NANO, 2025, 19 (01) : 1832 - 1844
  • [49] Surface-engineered Ti3C2T x MXene enabling rapid sodium/potassium ion storage
    Zhao, Yingying
    Dong, Guangsheng
    Zhang, Man
    Wang, Dashuai
    Chen, Yujin
    Cao, Dianxue
    Zhu, Kai
    Chen, Guohua
    2D MATERIALS, 2023, 10 (01)
  • [50] Electrospun Ti3C2T x MXene and silicon embedded in carbon nanofibers for lithium-ion batteries
    Xu, Huajun
    Chen, Gang
    Du, Fei
    Wang, Xin
    Dall'Agnese, Yohan
    Gao, Yu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (20)