Bimetallic ions pre-intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries

被引:8
|
作者
Hu, Bingbing [1 ]
Yang, Xinyao [1 ,4 ]
Li, Dongshan [1 ]
Luo, Liang [3 ]
Jiang, Jiayu [1 ]
Du, Tianlun [1 ]
Pu, Hong [2 ]
Ma, Guangqiang [2 ]
Xiang, Bin [3 ]
Li, Zhi [1 ]
机构
[1] Chongqing Jiaotong Univ, China Spain Collaborat Res Ctr Adv Mat, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
[2] Panzhihua Univ, Sichuan Vanadium Titanium Mat Engn Technol Res Ctr, Panzhihua 617000, Sichuan, Peoples R China
[3] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 401331, Peoples R China
[4] Sichuan Changhong Battery Co LTD, Mianyang 62100, Sichuan, Peoples R China
关键词
Metal ions; Intercalation; Vanadium oxides; Electrochemical properties; Aqueous zinc-ion battery; PENTOXIDE;
D O I
10.1016/j.jallcom.2024.176801
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new generation of rechargeable batteries known as Aqueous Zinc-Ion Batteries (AZIB) offers benefits including affordability, eco-friendliness, dependability, and safety. Hydrated vanadium oxides (V2O5 center dot nH2O) show potential as cathodes for AZIB due to their layered structure and multivalent properties. However, the zinc storage performance is limited by the structural instability and slow zinc ion mobility. In this work, TiK-VOH (the bimetallic ions system of Ti4+ and K+ co-pre-intercalated in V2O5 center dot nH2O) with lamellar fish scale-like structure is synthesized using a simple sol-gel method. The high positive charge density of the tetravalent Ti4+ is more beneficial to attract the electrons in the V-O layer and regulate the layer spacing (12.1 & Aring;), which not only improves the diffusion kinetics of zinc ions, but also acts as a pillar to stabilize the layer structure. K+ mainly plays the role of improving electrical conductivity, and then accelerates the charge transfer in the electrode reaction process. Auxiliary density functional theory simulation further confirms that the diffusion energy barrier and Fermi level are optimized by pre-intercalating bimetallic ions. Based on the synergistic effect of Ti4+ and K+, the TiK-VOH material shows excellent zinc storage performance, the highest specific capacity of TiK-VOH reaches 393.4 mAh g- 1 at a current density of 0.2 A g- 1, even at 10 A g- 1 (increased by 20 times), it still maintains a discharge specific capacity of 202 mAh g- 1 with a capacity retention rate of 94 % after 2000 cycles, the overall performance is much better than the Ti-VOH and K-VOH. This work offers an alternative perspective for the modification of vanadium-based cathode of AZIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Revealing the role of calcium ion intercalation of hydrated vanadium oxides for aqueous zinc-ion batteries
    Zhou, Tao
    Du, Xuan
    Gao, Guo
    JOURNAL OF ENERGY CHEMISTRY, 2024, 95 : 9 - 19
  • [22] Metal ions and organic molecule co-intercalated vanadium oxide cathode for high-performance zinc-ion batteries
    Hu, Liang
    Sun, Qinghe
    Cai, Hongkun
    Ni, Jian
    Zhang, Jianjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 177
  • [23] Simultaneous pre-intercalation of caesium and sodium ions into vanadium oxide bronze nanowires for high-performance aqueous zinc-ion batteries
    Tian, Hua
    He, Yunyi
    Wang, Lin
    Lai, Yuannan
    Wang, Jianwei
    Xiang, Hanqing
    Zhao, Wenjun
    Zhang, Lin
    MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (14) : 1920 - 1928
  • [24] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [25] Dual-ion "Rocking-Chair" chemistry: A vanadium dioxide anode with pre-intercalated zinc ions and protons for zinc metal-free zinc-ion batteries
    Huang, Xudong
    Huang, Yongfeng
    Shao, Fei
    Liu, Wenbao
    Kang, Feiyu
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [26] Tailoring vanadium oxide crystal orientation for high-performance aqueous zinc-ion batteries
    Li, Rong
    Yuan, Yifei
    Yang, Linyu
    Wang, Jun
    Wang, Shuying
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    DALTON TRANSACTIONS, 2024, 53 (09) : 4108 - 4118
  • [27] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Jiayu Bai
    Songjie Hu
    Lirong Feng
    Xinhui Jin
    Dong Wang
    Kai Zhang
    Xiaohui Guo
    Chinese Chemical Letters, 2024, 35 (09) : 517 - 521
  • [28] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [29] Employing "one for two" strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries
    Liu, Yanyan
    Pan, Zhenghui
    Tian, Dan
    Hu, Tao
    Jiang, Hanmei
    Yang, Jie
    Sun, Jingjing
    Zheng, Jiqi
    Meng, Changgong
    Zhang, Yifu
    CHEMICAL ENGINEERING JOURNAL, 2020, 399
  • [30] Hydrated lithium ions intercalated V2O5 with dual-ion synergistic insertion mechanism for high-performance aqueous zinc-ion batteries
    Tong, Yunxiao
    Li, Xiaoman
    Su, Senda
    Li, Jinzhen
    Fang, Junzhuo
    Liang, Bin
    Hou, Jianhua
    Luo, Min
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 606 : 645 - 653