State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review

被引:0
|
作者
Zhang, Jianyu [1 ]
Li, Kang [1 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, England
关键词
state-of-health estimation; lithium-ion batteries; hybrid electric vehicles; REMAINING USEFUL LIFE; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; INTERNAL RESISTANCE; ONLINE ESTIMATION; DEGRADATION; CHARGE; MODEL; SOH; PREDICTION; CELLS;
D O I
10.3390/en17225753
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a comprehensive review of state-of-health (SoH) estimation methods for lithium-ion batteries, with a particular focus on the specific challenges encountered in hybrid electric vehicle (HEV) applications. As the demand for electric transportation grows, accurately assessing battery health has become crucial to ensuring vehicle range, safety, and battery lifespan, underscoring the relevance of high-precision SoH estimation methods in HEV applications. The paper begins with outlining current SoH estimation methods, including capacity-based, impedance-based, voltage and temperature-based, and model-based approaches, analyzing their advantages, limitations, and applicability. The paper then examines the impact of unique operating conditions in HEVs, such as frequent charge-discharge cycles and fluctuating power demands, which necessitate tailored SoH estimation techniques. Moreover, this review summarizes the latest research advances, identifies gaps in existing methods, and proposes scientifically innovative improvements, such as refining estimation models, developing techniques specific to HEV operational profiles, and integrating multiple parameters (e.g., voltage, temperature, and impedance) to enhance estimation accuracy. These approaches offer new pathways to achieve higher predictive accuracy, better meeting practical application needs. The paper also underscores the importance of validating these estimation methods in real-world scenarios to ensure their practical feasibility. Through systematic evaluation and innovative recommendations, this review contributes to a deeper understanding of SoH estimation for lithium-ion batteries, especially in HEV contexts, and provides a theoretical basis to advance battery management system optimization technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] State of health estimation for lithium-ion batteries in real-world electric vehicles
    Ji Wu
    LeiChao Fang
    GuangZhong Dong
    MingQiang Lin
    Science China Technological Sciences, 2023, 66 : 47 - 56
  • [22] A Review of Critical State Joint Estimation Methods of Lithium-Ion Batteries in Electric Vehicles
    Hou, Junjian
    Li, Tong
    Zhou, Fang
    Zhao, Dengfeng
    Zhong, Yudong
    Yao, Lei
    Zeng, Li
    WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (09):
  • [23] A comprehensive review of state of charge estimation in lithium-ion batteries used in electric vehicles
    Selvaraj, Vedhanayaki
    Vairavasundaram, Indragandhi
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [24] Online state-of-health estimation algorithm for lithium-ion batteries in electric vehicles based on compression ratio of open circuit voltage
    Noh, Tae -Won
    Kim, Dong Hwan
    Lee, Byoung Kuk
    JOURNAL OF ENERGY STORAGE, 2023, 57
  • [25] State of charge and state of health estimation of a lithium-ion battery for electric vehicles: A review
    Belmajdoub, N.
    Lajouad, R.
    El Magri, A.
    Boudoudouh, S.
    IFAC PAPERSONLINE, 2024, 58 (13): : 460 - 465
  • [26] Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications
    Yang, Sijia
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Zhang, Linjing
    Wang, Yubin
    JOURNAL OF CLEANER PRODUCTION, 2021, 314
  • [27] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021
  • [28] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [29] State-of-health estimation of lithium-ion batteries based on QPSO-BPNN
    Yao, Yongming
    Li, Fei
    Li, Haofa
    Liu, Junchi
    Wang, Xindi
    Li, Tianyu
    IONICS, 2025, 31 (02) : 1437 - 1449
  • [30] Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
    Deng, Yuanwang
    Ying, Hejie
    Jiaqiang, E.
    Zhu, Hao
    Wei, Kexiang
    Chen, Jingwei
    Zhang, Feng
    Liao, Gaoliang
    ENERGY, 2019, 176 : 91 - 102