A tutorial on optimal control and reinforcement learning methods for quantum technologies

被引:0
|
作者
Giannelli, Luigi [1 ,2 ]
Sgroi, Sofia [4 ]
Brown, Jonathon [4 ]
Paraoanu, Gheorghe Sorin [5 ]
Paternostro, Mauro [4 ]
Paladino, Elisabetta [1 ,2 ,3 ]
Falci, Giuseppe [1 ,2 ,3 ]
机构
[1] Dipartimento di Fisica e Astronomia Ettore Majorana, Università di Catania, Via S. Sofia 64, Catania,95123, Italy
[2] CNR-IMM, UoS Università, Catania,95123, Italy
[3] INFN, Sez. Catania, Catania,95123, Italy
[4] Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast,BT7 1NN, United Kingdom
[5] QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, AALTO,FI-00076, Finland
关键词
103;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Harnessing deep reinforcement learning to construct time-dependent optimal fields for quantum control dynamics
    Gao, Yuanqi
    Wang, Xian
    Yu, Nanpeng
    Wong, Bryan M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (39) : 24012 - 24020
  • [42] Experimentally realizing efficient quantum control with reinforcement learning
    Ming-Zhong Ai
    Yongcheng Ding
    Yue Ban
    José D.Martín-Guerrero
    Jorge Casanova
    Jin-Ming Cui
    Yun-Feng Huang
    Xi Chen
    Chuan-Feng Li
    Guang-Can Guo
    Science China(Physics,Mechanics & Astronomy), 2022, 65 (05) : 17 - 24
  • [43] Experimentally realizing efficient quantum control with reinforcement learning
    MingZhong Ai
    Yongcheng Ding
    Yue Ban
    Jos DMartnGuerrero
    Jorge Casanova
    JinMing Cui
    YunFeng Huang
    Xi Chen
    ChuanFeng Li
    GuangCan Guo
    Science China(Physics,Mechanics & Astronomy), 2022, Mechanics & Astronomy)2022 (05) : 17 - 24
  • [44] Model-Free Quantum Control with Reinforcement Learning
    Sivak, V. V.
    Eickbusch, A.
    Liu, H.
    Royer, B.
    Tsioutsios, I
    Devoret, M. H.
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [45] Universal quantum control through deep reinforcement learning
    Niu, Murphy Yuezhen
    Boixo, Sergio
    Smelyanskiy, Vadim N.
    Neven, Hartmut
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [46] Universal quantum control through deep reinforcement learning
    Murphy Yuezhen Niu
    Sergio Boixo
    Vadim N. Smelyanskiy
    Hartmut Neven
    npj Quantum Information, 5
  • [47] Improving robustness of quantum feedback control with reinforcement learning
    Guatto, Manuel
    Susto, Gian Antonio
    Ticozzi, Francesco
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [48] Experimentally realizing efficient quantum control with reinforcement learning
    Ai, Ming-Zhong
    Ding, Yongcheng
    Ban, Yue
    Martin-Guerrero, Jose D.
    Casanova, Jorge
    Cui, Jin-Ming
    Huang, Yun-Feng
    Chen, Xi
    Li, Chuan-Feng
    Guo, Guang-Can
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (05)
  • [49] Open quantum system control based on reinforcement learning
    Wei, Peng
    Li, Na
    Xi, Zairong
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6911 - 6916
  • [50] Deep reinforcement learning with reward design for quantum control
    Yu H.
    Zhao X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1087 - 1101