Interfacial space charge design with desired electron density to enhance sodium storage of MoS2@Nb2O5 anode

被引:4
|
作者
Xu, Xin [1 ]
Robertson, Stuart Jacob [2 ]
Yang, Tao [1 ]
Chen, Fuzhou [1 ]
Geng, Xinhua [1 ]
Wang, Yanjun [3 ]
Ji, Feng [4 ]
Sun, Changlong [1 ]
Chen, Shengzhou [1 ]
Shao, Minhua [2 ,5 ,6 ]
Wang, Jiahai [1 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[3] Guangzhou Hengyun Enterprises Holdings Ltd, Guangzhou 510246, Guangdong, Peoples R China
[4] Guangzhou High Tech Zone Inst Energy Technol, Guangzhou 513019, Guangdong, Peoples R China
[5] Hong Kong Univ Sci & Technol, CIAC HK Joint Lab Hydrogen Energy, Kowloon, Clear Watery Bay, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Fok Ying Tung Res Inst, Guangzhou Key Lab Electrochem Energy Storage Techn, Guangzhou 511458, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Interfacial effect; Sodium-ion battery; Electrochemical reaction kinetics; DFT; OXIDE-ASSISTED SYNTHESIS; GRAPHENE-OXIDE; LITHIUM; NANOSHEETS; MOS2; HETEROSTRUCTURE;
D O I
10.1016/j.nanoen.2024.109739
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interfacial effect is crucial for achieving superior sodium-ion storage performance in MoS2-based anodes. In this study, we constructed an interfacial effect by hydrothermally synthesizing Nb2O5 nanoparticles on MoS2 nanosheets (MoS2@Nb2O5). XPS analysis confirms a significant chemical interaction between MoS2 and Nb2O5 through interfacial covalent bonding (Mo-S/Nb-O) which enhances interatomic electron migration. Electrochemical kinetic analysis indicates an increased pseudocapacitance contribution. The galvanostatic intermittent titration technique (GITT) analysis shows improved charge transfer kinetics. Ex-situ XPS results reveal the reversible intercalation/deintercalation and oxidation/reduction mechanisms of the MoS2@Nb2O5 anode. Density functional theory (DFT) results show that strong interfacial bonding significantly enhances electrochemical reaction kinetics. The discharge capacity of the MoS2@Nb2O5 anode reaches up to 414.5 mA h g- 1 at 0.1 A g- 1 after 200 cycles, and the capacity retention is approximately 97.5 % at 2.0 A g- 1 after 1000 cycles, demonstrating good rate capability and capacity retention. This in-situ interfacial construction strategy presents an effective approach to designing MoS2-based anodes with improved electrochemical performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Nb2O5 Nanoparticles Anchored on an N-Doped Graphene Hybrid Anode for a Sodium-Ion Capacitor with High Energy Density
    She, Liaona
    Iran, Zhe
    Kang, Liping
    He, Xuexia
    Lei, Zhibin
    Shi, Feng
    Xu, Hua
    Sun, Jie
    Liu, Zong-Huai
    ACS OMEGA, 2018, 3 (11): : 15943 - 15951
  • [22] Ultrahigh energy storage density and instantaneous discharge power density in BaO-PbO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics
    Wang, Shujian
    Tian, Jia
    Liu, Jingran
    Yang, Ke
    Shen, Bo
    Zhai, Jiwei
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (46) : 12608 - 12614
  • [23] Oxygen vacancies Nb2O5-x: Ultrastable lithium storage anode materials for advanced rechargeable batteries
    Fang, Wei
    Zhang, Yan
    Kang, Cong
    Meng, Qi
    Shi, Anran
    Lou, Shuaifeng
    Cheng, Xinqun
    Yin, Geping
    Zhang, Lingling
    APPLIED SURFACE SCIENCE, 2022, 600
  • [24] Enhancing the Lithium Storage Performance of the Nb2O5 Anode via Synergistic Engineering of Phase and Cu Doping
    Dong, Hao
    Yao, Tianhao
    Ji, Xin
    Zhang, Qingmiao
    Lin, Xiongfeng
    Zhang, Binglin
    Ma, Chuansheng
    Meng, Lingjie
    Chen, Yu
    Wang, Hongkang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22055 - 22065
  • [25] Enhancing the Lithium Storage Performance of the Nb2O5 Anode via Synergistic Engineering of Phase and Cu Doping
    Dong H.
    Yao T.
    Ji X.
    Zhang Q.
    Lin X.
    Zhang B.
    Ma C.
    Meng L.
    Chen Y.
    Wang H.
    ACS Applied Materials and Interfaces, 2024, 16 (17): : 22055 - 22065
  • [26] Electron density in the sodium vanadium oxide bronze β-NaxV2O5 at 9 K
    Ozerov, RP
    Streltsov, VA
    Sobolev, AN
    Figgis, BN
    Volkov, VL
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2001, 57 : 244 - 250
  • [27] Interfacial oxygen bridges engineering between Nb2O5 and graphene towards advanced sodium ion capacitors
    Yu, Cuiping
    Lin, Yunyao
    Wang, Yan
    Zhang, Jianfang
    Xia, Chenhong
    Cui, Jiewu
    Liu, Jiaqin
    Zhang, Yong
    Tan, Hark Hoe
    Wu, Yucheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 684 : 403 - 411
  • [28] Design of Nb2O5@rGO composites to optimize the lithium-ion storage performance
    Kang, Rong
    Li, Sheng
    Zou, Bobo
    Liu, Xianhu
    Zhao, Yan
    Qiu, Jingxia
    Li, Guochun
    Qiao, Fen
    Lian, Jiabiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 865
  • [29] Separation of transport, charge storage and reaction processes of porous electrocatalytic IrO2 and IrO2/Nb2O5 electrodes
    Terezo, AJ
    Bisquert, J
    Pereira, EC
    Garcia-Belmonte, G
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 508 (1-2) : 59 - 69
  • [30] Single-pot synthesis of Nb2O5-V2O5 nanocomposite for advanced charge storage applications: Unveiling morphological, structural and electrochemical insights
    Revathi, M.
    Bennie, R. Biju
    Joel, C.
    Narayanan, K.
    Khan, Mohd Shahnawaz
    Kumar, Yedluri Anil
    ELECTROCHIMICA ACTA, 2024, 483