SeisFusion: Constrained Diffusion Model With Input Guidance for 3-D Seismic Data Interpolation and Reconstruction

被引:1
|
作者
Wang, Shuang [1 ]
Deng, Fei [2 ]
Jiang, Peifan [1 ]
Gong, Zishan [2 ]
Wei, Xiaolin [2 ]
Wang, Yuqing [2 ]
机构
[1] Chengdu Univ Technol, Coll Geophys, Key Lab Earth Explorat & Informat Tech, Minist Educ, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Coll Comp Sci & Cyber Secur, Chengdu 610059, Peoples R China
关键词
Diffusion model; neural network; seismic data reconstruction; TRACE INTERPOLATION; TRANSFORM;
D O I
10.1109/TGRS.2024.3462414
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic data often suffer from missing traces, and traditional reconstruction methods are cumbersome in parameterization and struggle to handle large-scale missing data. While deep learning has shown powerful reconstruction capabilities, convolutional neural networks' (CNNs) point-to-point reconstruction may not fully cover the distribution of the entire dataset and may suffer performance degradation under complex missing patterns. In response to this challenge, we propose a novel diffusion model reconstruction framework tailored for 3-D seismic data. To facilitate 3-D seismic data reconstruction using diffusion models, we introduce conditional constraints into the diffusion model, constraining the generated data of the diffusion model based on the input data to be reconstructed. We introduce a 3-D neural network architecture into the diffusion model and refine the diffusion model's generation process by incorporating existing parts of the data into the generation process, resulting in reconstructions with higher consistency. Through ablation studies determining optimal parameter values, although the sampling time is longer, our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets, effectively addressing a wide range of complex missing patterns. Our implementation is available at https://github.com/WAL-l/SeisFusion.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Local discontinuity measures for 3-D seismic data
    Cohen, I
    Coifman, RR
    GEOPHYSICS, 2002, 67 (06) : 1933 - 1945
  • [32] 3-D SEISMIC TRACKING WITH PROBABILISTIC DATA ASSOCIATION
    WOODHAM, CA
    SANDHAM, WA
    DURRANI, TS
    GEOPHYSICS, 1995, 60 (04) : 1088 - 1094
  • [33] Fault surface detection in 3-D seismic data
    Gibson, D
    Spann, M
    Turner, J
    Wright, T
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (09): : 2094 - 2102
  • [34] NEW METHODS IN 3-D SEISMIC DATA ACQUISITION
    BRINK, M
    HELGAKER, P
    GEOPHYSICS, 1985, 50 (02) : 302 - 302
  • [35] Simultaneous Denoising and Interpolation of 3-D Seismic Data via Damped Data-Driven Optimal Singular Value Shrinkage
    Nazari Siahsar M.A.
    Gholtashi S.
    Olyaei Torshizi E.
    Chen W.
    Chen Y.
    IEEE Geoscience and Remote Sensing Letters, 2017, 14 (07): : 1086 - 1090
  • [36] Simultaneous Denoising and Interpolation of 3-D Seismic Data via Damped Data-Driven Optimal Singular Value Shrinkage
    Siahsar, Mohammad Amir Nazari
    Gholtashi, Saman
    Torshizi, Ehsan Olyaei
    Chen, Wei
    Chen, Yangkang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1086 - 1090
  • [37] L1-constrained 3-D face sparse reconstruction
    Ding, Liu
    Ding, Xiaoqing
    Fang, Chi
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2012, 52 (05): : 581 - 585
  • [38] Reconstruction of a 3-D object model using 2d image contours data
    Chen, Mei-Yung
    Guo, Jiang-Yu
    Hung, In-Yung
    ICIC Express Letters, 2010, 4 (6 B): : 2287 - 2292
  • [39] MLPCC-MLMAE-Based Early Stopping Strategy for Unsupervised 3-D Seismic Data Reconstruction
    Cao, Wei
    Tian, Feng
    Liu, Zongbao
    Liu, Fang
    Zhao, Yang
    Shi, Ying
    Wang, Weihong
    Guo, Xuebao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [40] Computer modelling of 3-D cathodoluminescence data reconstruction method and variable parameters optimization of 3-d reconstruction algorithm
    Ivannikov, PV
    Saparin, GV
    Obyden, SK
    Dronov, SV
    SCANNING, 1999, 21 (02) : 156 - 157