REFLECTIONLESS DISCRETE PERFECTLY MATCHED LAYERS FOR HIGHER-ORDER FINITE DIFFERENCE SCHEMES

被引:0
|
作者
Hojas, Vicente A. [1 ]
Perez-Arancib, Carlos [2 ,3 ]
Sanchez, Manuel A. [4 ]
机构
[1] Pontificia Univ Catolica Chile, Sch Engn, Santiago, Chile
[2] Univ Twente, Dept Appl Math, Enschede, Netherlands
[3] Univ Twente, MESA Inst, Enschede, Netherlands
[4] Pontificia Univ Catolica Chile, Inst Math & Computat Engn, Santiago, Chile
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 05期
关键词
wave equation; Helmholtz equations; perfectly matched layer; finite difference method; absorbing boundary condition; non-reflecting boundary condition; ABSORBING BOUNDARY-CONDITIONS; NUMERICAL REFLECTION; EQUATIONS; PML; PERFORMANCE; FORMULAS;
D O I
10.1137/23M1581558
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces discrete holomorphic perfectly matched layers (PMLs) specifically designed for high-order finite difference (FD) discretizations of the scalar wave equation. In contrast to standard PDE-based PMLs, the proposed method achieves the remarkable outcome of completely eliminating numerical reflections at the PML interface, in practice achieving errors at the level of machine precision. Our approach builds upon the ideas put forth in a recent publication [A. Chern, J. Comput. Phys., 381 (2019), pp. 91--109] expanding the scope from the standard second- order FD method to arbitrarily high-order schemes. This generalization uses additional localized PML variables to accommodate the larger stencils employed. We establish that the numerical solutions generated by our proposed schemes exhibit a geometric decay rate as they propagate within the PML domain. To showcase the effectiveness of our method, we present a variety of numerical examples, including waveguide problems. These examples highlight the importance of employing high-order schemes to effectively address and minimize undesired numerical dispersion errors, emphasizing the practical advantages and applicability of our approach.
引用
收藏
页码:A3094 / A3123
页数:30
相关论文
共 50 条
  • [41] Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, part I: Theory
    Georgakopoulos, SV
    Birtcher, CR
    Balanis, CA
    Renaut, RA
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2002, 44 (01) : 134 - 142
  • [42] New higher-order compact finite difference schemes for 1D heat conduction equations
    Han, Fei
    Dai, Weizhong
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (16-17) : 7940 - 7952
  • [43] Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, part 2: Applications
    Georgakopoulos, SV
    Birtcher, CR
    Balanis, CA
    Renaut, RA
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2002, 44 (02) : 92 - 101
  • [44] Double Higher-Order FEM Modeling Using An Anisotropic Conformal Perfectly Matched Layer
    Smull, Aaron P.
    Manic, Ana B.
    Manic, Sanja B.
    Notaros, Branislav M.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 1119 - 1120
  • [45] A COMPARISON OF THE BERENGER PERFECTLY MATCHED LAYER AND THE LINDMAN HIGHER-ORDER ABCS FOR THE FDTD METHOD
    ANDREW, WV
    BALANIS, CA
    TIRKAS, PA
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (06): : 192 - 194
  • [46] Higher order finite difference schemes for the magnetic induction equations
    Ujjwal Koley
    Siddhartha Mishra
    Nils Henrik Risebro
    Magnus Svärd
    BIT Numerical Mathematics, 2009, 49 : 375 - 395
  • [47] Generalized finite difference schemes with higher order Whitney forms
    Kettunen, Lauri
    Lohi, Jonni
    Rabina, Jukka
    Monkola, Sanna
    Rossi, Tuomo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (04): : 1439 - 1459
  • [48] Generalized finite difference schemes with higher order Whitney forms
    Kettunen, Lauri
    Lohi, Jonni
    Räbinä, Jukka
    Mönkölä, Sanna
    Rossi, Tuomo
    Kettunen, Lauri (lauri.y.o.kettunen@jyu.fi), 1600, EDP Sciences (55): : 1439 - 1459
  • [49] Higher order finite difference schemes for the magnetic induction equations
    Koley, Ujjwal
    Mishra, Siddhartha
    Risebro, Nils Henrik
    Svard, Magnus
    BIT NUMERICAL MATHEMATICS, 2009, 49 (02) : 375 - 395
  • [50] Minimizing the discrete reflectivity of perfectly matched layers.
    Lu, YY
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (1-4) : 487 - 489