3D object detection for autonomous driving: Methods, models, sensors, data, and challenges

被引:0
|
作者
Ghasemieh A. [1 ]
Kashef R. [1 ]
机构
[1] Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto
来源
关键词
3D object detection; Autonomous vehicles; LiDAR; Point cloud; Sensors; Stereo images;
D O I
10.1016/j.treng.2022.100115
中图分类号
学科分类号
摘要
Detection of the surrounding objects of a vehicle is the most crucial step in autonomous driving. Failure to identify those objects correctly in a timely manner can cause irreparable damage, impacting our safety and society. Several studies have been introduced to identify these objects in the two-dimensional (2D) and three-dimensional (3D) vector space. The 2D object detection method has achieved remarkable success; however, in the last few years, detecting objects in 3D have received more remarkable adoption. 3D object recognition has several advantages over 2D detection methods, as more accurate information about the environment is obtained for better detection. For example, the depth of the images is not considered in the 2D detection, which reduces the detection accuracy. Despite considerable efforts in 3D object detection, it has not yet reached the stage of maturity. Therefore, in this paper, we aim at providing a comprehensive overview of the state-of-the-art 3D object detection methods, with a focus on 1) identifying advantages and limitations, 2) revelling a novel categorization of the literature, 3) outlying the various training procedures, 4) highlighting the research gap in the existing methods and 5) building a road map for future directions. © 2022
引用
收藏
相关论文
共 50 条
  • [21] Real-Time 3D Object Detection and Classification in Autonomous Driving Environment Using 3D LiDAR and Camera Sensors
    Arikumar, K. S.
    Kumar, A. Deepak
    Gadekallu, Thippa Reddy
    Prathiba, Sahaya Beni
    Tamilarasi, K.
    ELECTRONICS, 2022, 11 (24)
  • [22] GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving
    Li, Buyu
    Ouyang, Wanli
    Sheng, Lu
    Zeng, Xingyu
    Wang, Xiaogang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1019 - 1028
  • [23] Research on 3D Point Cloud Object Detection Algorithm for Autonomous Driving
    Jiang, Haiyang
    Lu, Yuanyao
    Chen, Shengnan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [24] 3D object detection based on image and LIDAR fusion for autonomous driving
    Chen G.
    Yi H.
    Mao Z.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 237 - 251
  • [25] Efficient Uncertainty Estimation for Monocular 3D Object Detection in Autonomous Driving
    Liu, Zechen
    Han, Zhihua
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2711 - 2718
  • [26] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving
    Chen, Yi-Nan
    Dai, Hang
    Ding, Yong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 877 - 887
  • [27] R-CNN Based 3D Object Detection for Autonomous Driving
    Hu, Hongyu
    Zhao, Tongtong
    Wang, Qi
    Gao, Fei
    He, Lei
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 918 - 929
  • [28] A semi-supervised 3D object detection method for autonomous driving
    Zhang, Jiacheng
    Liu, Huafeng
    Lu, Jianfeng
    DISPLAYS, 2022, 71
  • [29] Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
    Dong, Yinpeng
    Kang, Caixin
    Zhang, Jinlai
    Zhu, Zijian
    Wang, Yikai
    Yang, Xiao
    Su, Hang
    Wei, Xingxing
    Zhu, Jun
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1022 - 1032
  • [30] Monocular 3D Object Detection for Autonomous Driving Based on Contextual Transformer
    She, Xiangyang
    Yan, Weijia
    Dong, Lihong
    Computer Engineering and Applications, 2024, 60 (19) : 178 - 189