Review of ultrasonic vibration-assisted milling technology

被引:0
|
作者
Li, Ang [1 ]
Zhang, Xuewei [1 ,2 ]
Chen, Jianbo [1 ]
Shi, Ting [1 ]
Wen, Lu [1 ]
Yu, Tianbiao [1 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Peoples R China
[2] Northeastern Univ, Natl Frontiers Sci Ctr Ind Intelligence & Syst Opt, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultrasonic-assisted milling; Hard-to-machine materials; Cutting forces; Cutting temperature; Surface quality; CUTTING FORCE PREDICTION; SINGLE-CRYSTAL DIAMOND; MICRO-END MILLS; ND-YAG LASER; OF-THE-ART; SURFACE INTEGRITY; HIGH-TEMPERATURE; CBN TOOLS; WEAR; PERFORMANCE;
D O I
10.1016/j.precisioneng.2024.10.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Compared with the conventional milling technology, the ultrasonic vibration-assisted milling technology has better machining performance for hard-to-machine materials. With the progress of ultrasonic generators and ultrasonic transducers, the research of the ultrasonic-assisted milling technology has been developed rapidly. Correspondingly, new design requirements and theoretical concepts are proposed to meet the high-performance requirements of manufacturing complex structures with hard-to-machine materials. There are few comprehensive reviews about the ultrasonic vibration-assisted milling technology. Therefore, we present the first comprehensive review of the advantages, the basic principles, the historical research progress, the cutting tools, the workpiece material properties and the cutting characteristics of the ultrasonic vibration-assisted milling technology to lay a foundation for the related research. In addition, the shortcomings of the existing theories and the outlook for future research directions are also discussed.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [31] Chatter stability analysis and prediction for elliptical ultrasonic vibration-assisted milling process
    Li, Zhongqun
    Yang, Shangzhen
    Liu, Qiang
    Liu, Hong
    Liu, Yang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (5-6): : 2937 - 2950
  • [32] Friction and wear on titanium alloy surface machined by ultrasonic vibration-assisted milling
    Zheng, Kan
    Liao, Wenhe
    Dong, Qi
    Sun, Lianjun
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (09)
  • [33] Experimental Study of Multidimensional Ultrasonic Vibration-Assisted Milling of SiCp/Al Composites
    Liang, Song
    Sang, Jinglong
    Su, Bo
    Zhang, Yu
    Cai, Zongkai
    Liu, Gaofeng
    Xiang, Daohui
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2025, 26 (03) : 711 - 726
  • [34] Edge breakage mechanism of optical glass surface in ultrasonic vibration-assisted milling
    Tong, Jinglin
    Yang, Shuaikun
    Ye, Yanqiu
    Zhang, Zhipeng
    Song, Chaosheng
    Wang, Xiaobo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 131 (5-6): : 2265 - 2278
  • [35] Feed-direction ultrasonic vibration-assisted milling surface texture formation
    Tao, Guocan
    Ma, Chao
    Bai, Lijuan
    Shen, Xuehui
    Zhang, Jianhua
    MATERIALS AND MANUFACTURING PROCESSES, 2017, 32 (02) : 193 - 198
  • [36] Improving and Predicting the Surface Roughness and the Machining Accuracy in Ultrasonic Vibration-Assisted Milling
    Baraya, Mohamed
    Yan, Jiwang
    Hossam, Mohab
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (SUPPL 1) : 127 - 140
  • [37] Edge breakage mechanism of optical glass surface in ultrasonic vibration-assisted milling
    Jinglin Tong
    Shuaikun Yang
    Yanqiu Ye
    Zhipeng Zhang
    Chaosheng Song
    Xiaobo Wang
    The International Journal of Advanced Manufacturing Technology, 2024, 131 : 2265 - 2278
  • [38] Ultrasonic vibration-assisted electric discharge machining: A research review
    Khatri, Bharat C.
    Rathod, Pravin
    Valaki, Janak B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2016, 230 (02) : 319 - 330
  • [39] Investigation of tool-workpiece contact rate and milling force in elliptical ultrasonic vibration-assisted milling
    Zongyuan Li
    Lida Zhu
    Zhichao Yang
    Jian Ma
    Wenbin Cao
    The International Journal of Advanced Manufacturing Technology, 2022, 118 : 585 - 601
  • [40] Investigation of tool-workpiece contact rate and milling force in elliptical ultrasonic vibration-assisted milling
    Li, Zongyuan
    Zhu, Lida
    Yang, Zhichao
    Ma, Jian
    Cao, Wenbin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 118 (1-2): : 585 - 601