Genesis of the Mamuniyeh copper deposit in the central Urumieh-Dokhtar Magmatic Arc, Iran: Constraints from geology, geochemistry, fluid inclusions, and H-O-S isotopes

被引:0
|
作者
Goudarzi, Mohammad [1 ]
Zamanian, Hassan [2 ]
Kloetzli, Urs [3 ]
Lentz, David [4 ]
Ullah, Matee [3 ]
机构
[1] Lorestan Univ, Fac Basic Sci, Dept Geol, Khorramabad, Iran
[2] Univ Tehran, Fac Geol, Fac Sci, Tehran, Iran
[3] Univ Vienna, Fac Earth Sci Geog & Astron, Dept Lithospher Res, Vienna, Austria
[4] Univ New Brunswick, Dept Earth Sci, Fredericton, NB E3B 5A3, Canada
关键词
Mamuniyeh; Epithermal; Geochemistry; Fluid inclusion; Stable isotopes; Urumieh-Dokhtar; AU-AG DEPOSIT; ZIRCON U-PB; EPITHERMAL GOLD DEPOSIT; PORPHYRY CU; STABLE-ISOTOPE; SILVER DEPOSIT; HYDROGEN ISOTOPE; NW IRAN; HYDROTHERMAL ALTERATION; GEOTHERMAL SYSTEMS;
D O I
10.1016/j.oregeorev.2024.106279
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The Mamuniyeh Cu deposit is located in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA), 10 km south of the city of Mamuniyeh, Iran. Mineralization is controlled by faults with a NW-SE trend and hosted within an Eocene volcanic sequence and Oligo-Miocene hypabyssal calc-alkaline monzonitic and gabbroic bodies. Quartz + chalcopyrite veins are most abundant and high-grade ore containing up to 5 wt% Cu, although quartz + pyrite veins have the most abundant sulphide content. In addition, quartz + chalcopyrite + specular hematite + pyrite veins/veinlets are another common mineralized assemblage in the Mamuniyeh copper deposit, with pyrite, chalcopyrite, bornite, and oxide minerals (specular hematite, titanomagnetite, and magnetite) typical of the hypogene stage. Chalcocite, covellite, and dignite also formed at the margins of primary sulphides in the supergene (paleoweathering) stage. The mineralized veins exhibit colloform, crustiform, open space-fillings, replacements, and dissemination textural characteristics associated with mineralizing assemblages with silicification, argillization, chloritization, and sericitization assemblages. The salinity for L > V fluid inclusions is between 1.74 to 11.7 wt% NaCl and for (V > L) inclusions between 1.7 to 11.4 wt% NaCl. The average homogenization temperature and salinity for quartz + chalcopyrite + pyrite veins is 186 degrees C and 4.9 wt% NaCl. In the quartz + chalcopyrite assemblage an average of 185 degrees C and 4.5 wt% NaCl and for quartz + chalcopyrite + specularite + pyrite (QCSP) an average of 195 degrees C and 5.59 wt% NaCl was determined. In these three vein types, the fluid density has almost identical values ranging from 0.8 to 1.0 g/cm3. The mineralizing system evolved in two-stages; the first metal precipitation occurred at less than 1 km of crustal depths and second metal deposition stage at shallower crustal levels (less than 500 m). Although it appears that the boiling process occurred within the fluids of the area, the primary factor contributing to Cu mineralization was influenced by fluidmixing processes. The delta 18O and delta D values of ore fluids computed vary from + 6.08 to -0.50 %o and -92 to -71 %o, respectively, indicative of the blending of oxidizing and cooler meteoric waters with primary magmatic fluids. Calculated values of delta 34S of H2S in equilibrium with chalcopyrite ranges from -7.6 to -1.9 %o and H2S in equilibrium with pyrite ranges from -7.1 to -3.8 %o, respectively; this is consistent with monzodiorite to gabbro as the magmatic sulphur source for copper mineralizing fluids. Furthermore, the QCSP vein data align more closely with primary magmatic water compared to other veins, suggesting that precipitation occurred mainly from magmatic fluids, which experienced depletion in delta 18O due to mixing with meteoric waters (shallow oxygenated ground waters), which caused sulphide deposition. The geochemical features for these magmas show that contamination with crustal materials occurred during the ascent of the parent magma, as well as the role of suprasubduction fluids released from the subducting plate in mantle metasomatism. Based on all evidence, Cu mineralization in the Mamuniyeh deposit has been categorized as a low-sulphidation epithermal-type system, which formed during active magmatism in the central part of UDMA.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Genesis of Chambishi Copper Deposit in Copperbelt Province of Zambia: Evidence from Fluid Inclusions and H-O-S Isotope Geochemisty
    Hu Q.
    Feng Z.
    Mo J.
    Fang K.
    Liu J.
    Cai Y.
    Deng G.
    Huang X.
    Bai L.
    Qin P.
    Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 2021, 46 (05): : 1554 - 1568
  • [32] Molybdenite Re-Os dating, petrology, and geochemistry of granitoids in the Bondar Hanza porphyry Cu deposit (Urumieh-Dokhtar magmatic arc), Iran: Insight into petrogenesis, mineralization, and tectonic setting
    Mohebi, Aida
    Sepidbar, Fatemeh
    Mirnejad, Hassan
    Behzadi, Mehrdad
    GEOLOGICAL JOURNAL, 2020, 55 (11) : 7499 - 7516
  • [33] Genesis of the Huoshenmiao Mo deposit in the Luanchuan ore district, China: Constraints from geochronology, fluid inclusion, and H-O-S isotopes
    Wang, Sai
    Li, Bing
    Zhang, Xingkang
    Wang, Peng
    Chao, Weiwei
    Ye, Huishou
    Yang, Yongqiang
    GEOSCIENCE FRONTIERS, 2019, 10 (01) : 331 - 349
  • [34] Genesis of the Mahour Base Metal Deposit, Iran: Constraints from Fluid Inclusions and Sulfur Isotopes
    Moradiani, Zahra
    Ghaderi, Majid
    Tajeddin, Hossein-Ali
    Alfonso, Pura
    MINERALS, 2024, 14 (04)
  • [35] Recycled mantle source for porphyry mineralization: U-Pb and Re-Os geochronology, and S-Pb-Cu isotopic constraints from the Urumieh-Dokhtar magmatic arc, central Iran
    Babazadeh, Shahrouz
    Raeisi, Davood
    Santosh, M.
    Zhao, Miao
    D'Antonio, Massimo
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2025, 268
  • [36] Petrology and Mineral Chemistry of the Oligocene-Miocene Qazan Granitoids from Central Urumieh-Dokhtar Magmatic Arc, Iran: Implications for the Neo-Tethyan Subduction
    Chavide, Maria
    Manesh, Seyed Mohsen Tabatabaei
    Ahmadian, Jamshid
    PETROLOGY, 2022, 30 (01) : 107 - 132
  • [37] Contrasting platinum-group element geochemistry of post-collisional porphyry Cu ± Au ore-bearing and barren suites in the central and southeastern Urumieh-Dokhtar magmatic arc, Iran
    Hwang, Jiwon
    Park, Jung-Woo
    Wan, Bo
    Honarmand, Maryam
    MINERALIUM DEPOSITA, 2023, 58 (08) : 1583 - 1603
  • [38] Origin of ore-forming fluids in Qinggouzi stibnite deposit,NE China:Constraints from fluid inclusions and H-O-S isotopes
    BAKHT Shahzad
    SUN Fengyue
    WANG Linlin
    XU Chenghan
    YE Lina
    ZHU Xinran
    FAN Xingzhu
    GlobalGeology, 2021, 24 (02) : 80 - 88
  • [39] Ore Genesis of the Lunwei Granite-Related Scheelite Deposit in the Wuyi Metallogenic Belt, Southeast China: Constraints from Geochronology, Fluid Inclusions, and H-O-S Isotopes
    Wang, Hui
    Feng, Chengyou
    Zhao, Yiming
    Zhang, Mingyu
    Chen, Runsheng
    Chen, Jinliang
    RESOURCE GEOLOGY, 2016, 66 (03) : 240 - 258
  • [40] New constraints on the genesis and geodynamic setting of the Wulong gold deposit, Liaodong Peninsula, northeast China: evidence from geology, geochemistry, fluid inclusions, and C-H-O-S-Pb isotopes
    Cheng, Xihui
    Xu, Jiuhua
    Yang, Fuquan
    Zhang, Guorui
    Zhang, Hui
    Bian, Chunjing
    Xue, Qingpo
    CANADIAN JOURNAL OF EARTH SCIENCES, 2020, 57 (03) : 307 - 330