3D printing of ultra-high-performance concrete: Shape stability for various printing systems

被引:0
|
作者
Gomaa, Shady [1 ]
Irizarry, Elmer M. [1 ]
Ahmed, Ayesha [2 ]
Rosa, Raul Marrero [1 ]
Ahmed, Hassan [1 ]
Burroughs, Jedadiah [3 ]
Kreiger, Eric [3 ]
Liu, Jiaqi [1 ]
Troemner, Matthew [4 ]
Cusatis, Gianluca [1 ]
机构
[1] Northwestern Univ, Civil & Environm Engn Dept, Evanston, IL 60208 USA
[2] Northwestern Univ, Mech Engn Dept, Evanston, IL USA
[3] US Army Engineer Res & Dev Ctr, Vicksburg, MS USA
[4] North Fracture Grp, Houghton, MI USA
关键词
Concrete 3D printing; UHPC; Printing system; Extrusion system; Nozzle design; BOUNDARY-CONDITIONS; FRESH PROPERTIES; BRAZILIAN TEST; EXTRUSION; CONSTRUCTION; FABRICATION; THIXOTROPY; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2024.139039
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recently, global attention has turned to concrete 3D printing for its potential in structure optimization, life- cycle extension, emission reduction, and cost savings. However, uncertainties persist regarding the printability of ultra-high-performance concrete (UHPC). Previous studies often tailor a mix to a specific printing system and evaluate its printability based on measurements of pumpability, extrudability, and buildability, assuming consistent shape stability regardless of the chosen printing system. To further investigate this assumption, an experimental program was conducted using various printing systems on a nano-modified UHPC mix. Nano clay was incorporated into the self-leveling UHPC mix to increase its viscosity and yield stress, thereby enhancing layer stability post-extrusion. The experimental parameters included the type of robotic system, extrusion system, nozzle design, and material pumping method. Two robotic systems were utilized: a medium-scale gantry and a large-scale ABB robotic arm. Two distinct extrusion systems, a piston-type extruder and an auger system, were employed. Various nozzles, including circular and rectangular designs, were tested. Two pumps were used: a cavity pump and a Thom-Katt pump (piston-type pump). The results indicated that the shape stability of the UHPC mix is significantly influenced by the printing system, suggesting that concrete printability is dependent on the printing system rather than being an inherent material property, as suggested by other researchers. Furthermore, the use of a circular nozzle demonstrated different shape stabilities when the extrusion system was changed from a piston-type extruder to an auger system. Shape stability improved with the auger system due to the lower accumulated pressure within the system. Additionally, the method of material pumping to the extrusion system was found to be critical for the shape stability of the printed layers. The mix failed to maintain its shape post-extrusion when the cavity pump was employed, which was attributed to the higher strain rates imposed on the material during the pumping process. In contrast, this issue was not observed when the piston-type pump was used.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Shape Optimization Technique in 3D Printing
    Ali, Md Hazrat
    Otepbergenov, Temirlan
    Batay, Sagidolla
    Kurokawa, Syuhei
    PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTS (ICACR 2019), 2018, : 96 - 101
  • [32] 3D Concrete Printing for Sustainable Construction
    Kaszynska, Maria
    Skibicki, Szymon
    Hoffmann, Marcin
    ENERGIES, 2020, 13 (23)
  • [33] 3D printing of shape memory polymers
    Ehrmann, Guido
    Ehrmann, Andrea
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (34)
  • [34] Sustainable materials for 3D concrete printing
    Bhattacherjee, Shantanu
    Basavaraj, Anusha S.
    Rahul, A. V.
    Santhanam, Manu
    Gettu, Ravindra
    Panda, Biranchi
    Schlangen, Erik
    Chen, Yu
    Copuroglu, Oguzhan
    Ma, Guowei
    Wang, Li
    Beigh, Mirza Abdul Basit
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2021, 122
  • [35] Multimaterial 3D printing for shape changing devices and 4D printing
    Ding, Zhen
    Yuan, Chao
    Dunn, Martin
    Qi, H. Jerry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [36] The impacts of fabrication systems on 3D concrete printing building forms
    Shuyi Huang
    Weiguo Xu
    Yuqian Li
    Frontiers of Architectural Research, 2022, 11 (04) : 653 - 669
  • [37] Evaluation of 3D concrete printing performance from a rheological perspective
    Lee, Keon-Woo
    Lee, Ho-Jae
    Choi, Myoung-Sung
    ADVANCES IN CONCRETE CONSTRUCTION, 2019, 8 (02) : 155 - 163
  • [38] The impacts of fabrication systems on 3D concrete printing building forms
    Huang, Shuyi
    Xu, Weiguo
    Li, Yuqian
    FRONTIERS OF ARCHITECTURAL RESEARCH, 2022, 11 (04) : 653 - 669
  • [39] Effect of hydration process on the interlayer bond tensile mechanical properties of ultra-high performance concrete for 3D printing
    Yang, Yekai
    Zhang, Chiyu
    Liu, Zhongxian
    Dong, Liang
    Yang, Ting
    Zhao, Qingxin
    Wu, Chengqing
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 451
  • [40] Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders
    Gosselin, C.
    Duballet, R.
    Roux, Ph.
    Gaudilliere, N.
    Dirrenberger, J.
    Morel, Ph.
    MATERIALS & DESIGN, 2016, 100 : 102 - 109