Hamiltonian learning using machine-learning models trained with continuous measurements

被引:0
|
作者
Tucker, Kris [1 ]
Rege, Amit Kiran [2 ]
Smith, Conor [3 ,4 ]
Monteleoni, Claire [2 ,5 ]
Albash, Tameem [6 ]
机构
[1] Univ Colorado Boulder, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Dept Comp Sci, Boulder, CO USA
[3] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM USA
[4] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM USA
[5] INRIA, Ctr Rech Paris, Paris, France
[6] Sandia Natl Labs, Ctr Comp Res, Albuquerque, NM 87185 USA
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 04期
基金
美国国家科学基金会;
关键词
Adversarial machine learning - Contrastive Learning - Federated learning - Hamiltonians - Quantum entanglement - Quantum optics - Recurrent neural networks - Self-supervised learning - Supervised learning - Unsupervised learning;
D O I
10.1103/PhysRevApplied.22.044080
中图分类号
O59 [应用物理学];
学科分类号
摘要
We build upon recent work on the use of machine-learning models to estimate Hamiltonian parameters using continuous weak measurement of qubits as input. We consider two settings for the training of our model: (1) supervised learning, where the weak-measurement training record can be labeled with known Hamiltonian parameters, and (2) unsupervised learning, where no labels are available. The first has the advantage of not requiring an explicit representation of the quantum state, thus potentially scaling very favorably to a larger number of qubits. The second requires the implementation of a physical model to map the Hamiltonian parameters to a measurement record, which we implement using an integrator of the physical model with a recurrent neural network to provide a model-free correction at every time step to account for small effects not captured by the physical model. We test our construction on a system of two qubits and demonstrate accurate prediction of multiple physical parameters in both the supervised context and the unsupervised context. We demonstrate that the model benefits from larger training sets, establishing that it is "learning," and we show robustness regarding errors in the assumed physical model by achieving accurate parameter estimation in the presence of unanticipated single-particle relaxation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Smartphones dependency risk analysis using machine-learning predictive models
    Giraldo-Jimenez, Claudia Fernanda
    Gaviria-Chavarro, Javier
    Sarria-Paja, Milton
    Bermeo Varon, Leonardo Antonio
    Villarejo-Mayor, John Jairo
    Rodacki, Andre Luiz Felix
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] Prediction of Post-Intubation Tachycardia Using Machine-Learning Models
    Kim, Hanna
    Jeong, Young-Seob
    Kang, Ah Reum
    Jung, Woohyun
    Chung, Yang Hoon
    Koo, Bon Sung
    Kim, Sang Hyun
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [23] Smartphones dependency risk analysis using machine-learning predictive models
    Claudia Fernanda Giraldo-Jiménez
    Javier Gaviria-Chavarro
    Milton Sarria-Paja
    Leonardo Antonio Bermeo Varón
    John Jairo Villarejo-Mayor
    André Luiz Felix Rodacki
    Scientific Reports, 12
  • [24] Quantification of intratumoural heterogeneity in mice and patients via machine-learning models trained on PET–MRI data
    Prateek Katiyar
    Johannes Schwenck
    Leonie Frauenfeld
    Mathew R. Divine
    Vaibhav Agrawal
    Ursula Kohlhofer
    Sergios Gatidis
    Roland Kontermann
    Alfred Königsrainer
    Leticia Quintanilla-Martinez
    Christian la Fougère
    Bernhard Schölkopf
    Bernd J. Pichler
    Jonathan A. Disselhorst
    Nature Biomedical Engineering, 2023, 7 : 1014 - 1027
  • [25] Improving measurements of similarity judgments with machine-learning algorithms
    Stevens, Jeffrey R.
    Saltzman, Alexis Polzkill
    Rasmussen, Tanner
    Soh, Leen-Kiat
    JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE, 2021, 4 (02): : 613 - 629
  • [26] Improving measurements of similarity judgments with machine-learning algorithms
    Jeffrey R. Stevens
    Alexis Polzkill Saltzman
    Tanner Rasmussen
    Leen-Kiat Soh
    Journal of Computational Social Science, 2021, 4 : 613 - 629
  • [27] Machine-learning models to predict myopia in children and adolescents
    Mu, Jingfeng
    Zhong, Haoxi
    Jiang, Mingjie
    FRONTIERS IN MEDICINE, 2024, 11
  • [28] Molecular Similarity Perception Based on Machine-Learning Models
    Gandini, Enrico
    Marcou, Gilles
    Bonachera, Fanny
    Varnek, Alexandre
    Pieraccini, Stefano
    Sironi, Maurizio
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (11)
  • [29] An investigation on machine-learning models for the prediction of cyanobacteria growth
    Giere, Johannes
    Riley, Derek
    Nowling, R. J.
    McComack, Joshua
    Sander, Hedda
    FUNDAMENTAL AND APPLIED LIMNOLOGY, 2020, 194 (02) : 85 - 94
  • [30] Physicians should build their own machine-learning models
    Mekki, Yosra Magdi
    PATTERNS, 2024, 5 (03):