Parameter identification of thermoelectric modules using enhanced slime mould algorithm (ESMA)

被引:1
|
作者
Ponnalagu, Dharswini [1 ]
Ahmad, Mohd Ashraf [1 ]
Jui, Julakha Jahan [1 ]
机构
[1] Univ Malaysia Pahang Al Sultan Abdullah, Fac Elect & Elect Engn Technol, Pekan, Malaysia
关键词
Thermoelectric modules; Parameter identification; Slime mould algorithm; Metaheuristics algorithms; HEAT-RECOVERY;
D O I
10.1016/j.rineng.2024.102833
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper sets pioneering research which investigates the parametric identification of thermoelectric modules (TEMs) through the employment of enhanced slime mould algorithm (ESMA). The proposed method incorporates a pair of modifications to the standard slime mould algorithm (SMA). Primary modification encloses computation of random average position between the slimes' current individual position and best individual position towards resolution of local optima issue. Subsequent modification then involves substitution of an exponential function to the existing tangent hyperbolic function within formula p of the standard SMA in enabling improved probability variants via the selection of updated equations. Competency of the proposed algorithm in generating the optimal parameters for TEMs was appraised based on 21 benchmarked design parameters, following the objective of root mean square error (RMSE) minimization between the temperature of both actual and estimated models. Acquired results which demonstrate lower values of RMSE and parameter deviation index against the standard SMA and other preceding algorithms such as particle swarm optimization, sine cosine algorithm, moth flame optimizer and ant lion optimizer ultimately verified ESMA's efficacy as an effective approach for accurate model identification.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Reinforcement of bionic trabecular bone scaffolds for bone defect repair using the slime mould algorithm
    Kong, Deyin
    Kang, Zhongxiong
    Jiang, Chaorui
    Zhang, Zhihui
    Wang, Xiebin
    Han, Qing
    Shi, Yanbin
    MATERIALS & DESIGN, 2023, 233
  • [42] Reliability optimization of micro-milling cutting parameters using slime mould sequence algorithm
    Ding, Pengfei
    Huang, Xianzhen
    Zhang, Xuewei
    Li, Yuxiong
    Wang, Changli
    SIMULATION MODELLING PRACTICE AND THEORY, 2022, 119
  • [43] Parameter Identification of Photovoltaic Models by an Enhanced RIME Algorithm
    Zhou, Ting-Ting
    Shang, Chao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [44] Precise parameter identification of a PEMFC model using a robust enhanced salp swarm algorithm
    Saidi, Salem
    Marrouchi, Sahbi
    Alhasnawi, Bilal Naji
    Pathak, Pawan Kumar
    Alshammari, Obaid
    Albaker, Abdullah
    Abbassi, Rabeh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 71 : 937 - 951
  • [45] Breast lesion detection from MRI images using quasi-oppositional slime mould algorithm
    Dipak Kumar Patra
    Tapas Si
    Sukumar Mondal
    Prakash Mukherjee
    Multimedia Tools and Applications, 2023, 82 : 30599 - 30641
  • [46] High Density Sensor Networks Intrusion Detection System for Anomaly Intruders Using the Slime Mould Algorithm
    Alwan, Mohammed Hasan
    Hammadi, Yousif, I
    Mahmood, Omar Abdulkareem
    Muthanna, Ammar
    Koucheryavy, Andrey
    ELECTRONICS, 2022, 11 (20)
  • [47] Parameter extraction of photovoltaic modules using a heuristic iterative algorithm
    Tao, Yunkun
    Bai, Jianbo
    Pachauri, Rupendra Kumar
    Sharma, Abhishek
    ENERGY CONVERSION AND MANAGEMENT, 2020, 224
  • [48] Feature subset selection in structural health monitoring data using an advanced binary slime mould algorithm
    Ghiasi, Ramin
    Malekjafarian, Abdollah
    JOURNAL OF STRUCTURAL INTEGRITY AND MAINTENANCE, 2023, 8 (04) : 209 - 225
  • [49] Parameter extraction of photovoltaic modules using a heuristic iterative algorithm
    Tao, Yunkun
    Bai, Jianbo
    Pachauri, Rupendra Kumar
    Sharma, Abhishek
    Bai, Jianbo (bai_jianbo@hhu.edu.cn), 1600, Elsevier Ltd (224):
  • [50] Prediction using multi-objective slime mould algorithm optimized support vector regression model
    Peng, Chong
    Che, Zhongyuan
    Liao, T. W.
    Zhang, Zhongwen
    APPLIED SOFT COMPUTING, 2023, 145