CBIR Using Features Derived by Deep Learning

被引:18
|
作者
Maji, Subhadip [1 ]
Bose, Smarajit [1 ]
机构
[1] Indian Statistical Institute, Plot No, 203, BT Rd Dunlop, Bonhooghly Government Colony, Baranagar,700108, India
来源
关键词
D O I
10.1145/3470568
中图分类号
学科分类号
摘要
49
引用
收藏
相关论文
共 50 条
  • [21] Burns Depth Assessment Using Deep Learning Features
    Abubakar, Aliyu
    Ugail, Hassan
    Smith, Kirsty M.
    Bukar, Ali Maina
    Elmahmudi, Ali
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2020, 40 (06) : 923 - 933
  • [22] Classification with Costly Features Using Deep Reinforcement Learning
    Janisch, Jaromir
    Pevny, Tomas
    Lisy, Viliam
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3959 - 3966
  • [23] Sarcasm Detection Using Deep Learning With Contextual Features
    Razali, Md Saifullah
    Halin, Alfian Abdul
    Ye, Lei
    Doraisamy, Shyamala
    Norowi, Noris Mohd
    IEEE ACCESS, 2021, 9 : 68609 - 68618
  • [24] Improved Performance in CBIR using Machine Learning Approach
    Naik, B. Ramesh
    Venugopal, T.
    2018 INTERNATIONAL CONFERENCE ON CONTROL, POWER, COMMUNICATION AND COMPUTING TECHNOLOGIES (ICCPCCT), 2018, : 533 - 539
  • [25] An Analogy-Relevance Feedback CBIR Method Using Multiple Features
    Xie, Hui
    Ji, Ying
    Lu, Yueming
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEM-SOLVING (ICCP), 2013, : 83 - 86
  • [26] Detailed investigation of deep features with sparse representation and dimensionality reduction in CBIR: A comparative study
    Tarawneh, Ahmad S.
    Celik, Ceyhun
    Hassanat, Ahmad B.
    Chetverikov, Dmitry
    INTELLIGENT DATA ANALYSIS, 2020, 24 (01) : 47 - 68
  • [27] LEARNING DEEP CLASSIFIERS WITH DEEP FEATURES
    Lei, Jie
    Song, Xinhui
    Sun, Li
    Song, Mingli
    Li, Na
    Chen, Chun
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [28] Improvement of Reuse of Classifiers in CBIR Using SVM Active Learning
    Tekawa, Masaaki
    Hattori, Motonobu
    NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II, 2010, 6444 : 598 - 605
  • [29] Deep-learning Derived Features for Lung Nodule Classification with Limited Datasets
    Thammasorn, P.
    Wu, W.
    Pierce, L. A.
    Pipavath, S. N.
    Lampe, P. D.
    Houghton, A. M.
    Haynor, D. R.
    Chaovalitwongse, W. A.
    Kinahan, P. E.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [30] Learning deep features to recognise speech emotion using merged deep CNN
    Zhao, Jianfeng
    Mao, Xia
    Chen, Lijiang
    IET SIGNAL PROCESSING, 2018, 12 (06) : 713 - 721