Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: Key parameters and perspective

被引:4
|
作者
Lu, Zhe [1 ]
Gao, Weizi [1 ]
Liu, Fukang [1 ]
Cui, Jingjing [1 ]
Feng, Shiwei [1 ]
Liang, Chen [1 ]
Guo, Yunlong [1 ]
Wang, Zhenxiang [1 ]
Mao, Zhijie [1 ]
Zhang, Biao [1 ]
机构
[1] Northwestern Polytech Univ, Xian Inst Flexible Elect IFE, Frontiers Sci Ctr Flexible Elect FSCFE, 127 West Youyi Rd, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Vat Photopolymerization; Digital Light Processing; Hydrogel; Bioprinting; Biomaterials; POLY(2-HYDROXYETHYL METHACRYLATE); CELL; PHOTOINITIATOR; TRANSPARENT; DELIVERY; FABRICATION; SCAFFOLDS; NETWORKS; POLYMER; MODEL;
D O I
10.1016/j.addma.2024.104443
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vat photopolymerization (VP) based digital light processing (DLP) 3D printing technology gains prominence in biomedical fields, particularly for creating complex tissue structures and aiding in regeneration. Hydrogels, known for their high-water content and biocompatibility, serve as an ideal material used in VP based DLP 3D printing for mimicking biological tissues. The review examines the crucial components of VP based DLP 3D printing of hydrogels in three categories: materials, including monomers and crosslinkers that make up of hydrogels; equipment, featuring various types of VP based DLP 3D printers; and printing parameters, such as light source and exposure time. The application of VP based DLP 3D printed hydrogels at different levels of biomedical field is discussed, providing an overview of the current trends and future possibilities of VP based DLP 3D printing hydrogels in biomedical science.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Reprintable Polymers for Digital Light Processing 3D Printing
    Zhu, Guangda
    Hou, Yi
    Xu, Jian
    Zhao, Ning
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (09)
  • [32] A Scalable Digital Light Processing 3D Printing Method
    Huang, Junjie
    Cai, Jiangkun
    Huangfu, Chenhao
    Li, Shikai
    Chen, Guoqiang
    Yun, Hao
    Xiao, Junfeng
    MICROMACHINES, 2024, 15 (11)
  • [33] Chitosan hydrogels in 3D printing for biomedical applications
    Rajabi, Mina
    McConnell, Michelle
    Cabral, Jaydee
    Ali, M. Azam
    CARBOHYDRATE POLYMERS, 2021, 260 (260)
  • [34] Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications
    Timofticiuc, Iosif-Aliodor
    Calinescu, Octavian
    Iftime, Adrian
    Dragosloveanu, Serban
    Caruntu, Ana
    Scheau, Andreea-Elena
    Badarau, Ioana Anca
    Didilescu, Andreea Cristiana
    Caruntu, Constantin
    Scheau, Cristian
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (01)
  • [35] Vat photopolymerization 3D printing of alumina ceramics with low sintering temperature
    Wang, Rong
    Cui, Yichen
    Ye, Haitao
    Cheng, Jianxiang
    Zhang, Han
    Zhu, Pengfei
    Tao, Ran
    Ge, Qi
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 42434 - 42443
  • [36] Engineering materials with light: recent progress in digital light processing based 3D printing
    Zhao, Zhi
    Tian, Xiaoxiao
    Song, Xiaoyan
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (40) : 13896 - 13917
  • [37] Photopolymerization of 3D conductive polypyrrole structures via digital light processing
    Price, Aaron D.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2016, 2016, 9798
  • [38] "Invisible" Digital Light Processing 3D Printing with Near Infrared Light
    Stevens, Lynn M.
    Tagnon, Clotilde
    Page, Zachariah A.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (20) : 22912 - 22920
  • [39] 3D Printing of Vinylogous Urethane-Based Methacrylic Covalent Adaptable Networks by Vat Photopolymerization
    Ballester-Bayarri, Laura
    Pascal, Alodi
    Ayestaran, Jon
    Gonzalez, Alba
    Ballard, Nicholas
    Aguirresarobe, Robert
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (05) : 2594 - 2603
  • [40] Digital light processing based multimaterial 3D printing: challenges, solutions and perspectives
    Cheng, Jianxiang
    Yu, Shouyi
    Wang, Rong
    Ge, Qi
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (04)