Dual-Domain Fusion Network Based on Wavelet Frequency Decomposition and Fuzzy Spatial Constraint for Remote Sensing Image Segmentation

被引:1
|
作者
Wei, Guangyi [1 ]
Xu, Jindong [1 ]
Yan, Weiqing [1 ]
Chong, Qianpeng [2 ]
Xing, Haihua [3 ]
Ni, Mengying [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[3] Hainan Normal Univ, Sch Informat Sci & Technol, Haikou 571158, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; semantic segmentation; wavelet transform; type-2; fuzzy; SEMANTIC SEGMENTATION; CHALLENGES; CLASSIFICATION; FRAMEWORK;
D O I
10.3390/rs16193594
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semantic segmentation is crucial for a wide range of downstream applications in remote sensing, aiming to classify pixels in remote sensing images (RSIs) at the semantic level. The dramatic variations in grayscale and the stacking of categories within RSIs lead to unstable inter-class variance and exacerbate the uncertainty around category boundaries. However, existing methods typically emphasize spatial information while overlooking frequency insights, making it difficult to achieve desirable results. To address these challenges, we propose a novel dual-domain fusion network that integrates both spatial and frequency features. For grayscale variations, a multi-level wavelet frequency decomposition module (MWFD) is introduced to extract and integrate multi-level frequency features to enhance the distinctiveness between spatially similar categories. To mitigate the uncertainty of boundaries, a type-2 fuzzy spatial constraint module (T2FSC) is proposed to achieve flexible higher-order fuzzy modeling to adaptively constrain the boundary features in the spatial by constructing upper and lower membership functions. Furthermore, a dual-domain feature fusion (DFF) module bridges the semantic gap between the frequency and spatial features, effectively realizes semantic alignment and feature fusion between the dual domains, which further improves the accuracy of segmentation results. We conduct comprehensive experiments and extensive ablation studies on three well-known datasets: Vaihingen, Potsdam, and GID. In these three datasets, our method achieved 74.56%, 73.60%, and 81.01% mIoU, respectively. Quantitative and qualitative results demonstrate that the proposed method significantly outperforms state-of-the-art methods, achieving an excellent balance between segmentation accuracy and computational overhead.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] STAIR FUSION NETWORK FOR REMOTE SENSING IMAGE SEMANTIC SEGMENTATION
    Hua, Wenyi
    Liu, Jia
    Liu, Fang
    Zhang, Wenhua
    An, Jiaqi
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5499 - 5502
  • [32] Remote sensing image fusion method based on wavelet packet frequency-shift
    Zhang, Deng-Rong
    Zhang, Xiao-Yu
    Yu, Le
    Liu, Fu-Bing
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2007, 41 (07): : 1097 - 1100
  • [33] A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation
    Luo, Yang
    Wang, Yingwei
    Zhao, Yongda
    Guan, Wei
    Shi, Hanfeng
    Fu, Chong
    Jiang, Hongyang
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [34] A dual domain multi-exposure image fusion network based on spatial-frequency integration
    Yang, Guang
    Li, Jie
    Gao, Xinbo
    NEUROCOMPUTING, 2024, 598
  • [35] SPATIAL-FREQUENCY NETWORK FOR SEGMENTATION OF REMOTE SENSING IMAGES
    Zhang, Tony
    Dick, Robert P.
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3553 - 3557
  • [36] Super-resolution for remote sensing images via dual-domain network learning
    Yang, Jie
    Ren, Chao
    Zhou, Xin
    He, Xiaohai
    Wang, Zhengyong
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (06)
  • [37] Hyperspectral Remote Sensing Image Segmentation Based on the Fuzzy Deep Convolutional Neural Network
    Zhao Tianyu
    Xu, Jindong
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 181 - 186
  • [38] Deblurring method for remote sensing image via dual scale parallel spatial fusion network
    An, Hang
    Chen, Xiaoxuan
    Wang, Lin
    Hou, Baopu
    Jin, Zhichao
    Meng, Na
    Jiang, Bo
    Li, Yaowei
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)
  • [39] High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network
    Zhang, Ziwen
    Li, Yang
    Liu, Qi
    Liu, Xiaodong
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 556 - 561
  • [40] AFNet: Adaptive Fusion Network for Remote Sensing Image Semantic Segmentation
    Liu, Rui
    Mi, Li
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7871 - 7886