Fe-doping accelerated magnesium storage kinetics in rutile TiO2 cathode materials

被引:3
|
作者
Zhang, Qianwei [1 ]
Liu, Xin [1 ]
Du, Changliang [1 ]
Jin, Mingwei [1 ]
Yang, Lifen [1 ]
Jiang, Rong [1 ]
Ma, Xilan [1 ]
Zhu, Youqi [1 ]
Cao, Chuanbao [1 ]
Zou, Meishuai [1 ]
机构
[1] Beijing Inst Technol, Res Ctr Mat Sci, Beijing Key Lab Construct Tailorable Adv Funct Mat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Rechargeable magnesium batteries; Cathode; Cation doping; Defect; Rutile TiO2; RECHARGEABLE BATTERY; OXYGEN VACANCIES; BLACK TIO2; SURFACE; ANODE; OXIDE; IONS;
D O I
10.1016/j.cej.2024.155812
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rutile titanium dioxide (TiO2) 2 ) is theoretically favored as the efficient cathode materials for magnesium secondary batteries, yet rarely reported due to sluggish kinetics, low capacity, and inferior reversibility. Herein, a defect engineering strategy is developed via cationic Fe-doping to enhance the electrochemical magnesium storage kinetics of the rutile TiO2 2 cathode materials and achieve the surface Mg2+ 2+ adsorption/diffusion mechanism. Abundant oxygen vacancies can be generated by Fe cations in rutile TiO2 2 via a molten salt flux method. The optimized rutile TiO2 2 cathode materials show large specific capacity of 204.8 mAh/g at current density of 100 mA g-1, higher than that of the TiO2-based 2-based counterparts reported previously. Additionally, the Mg2+ 2+ diffusion coefficient of Fe-doped rutile TiO2 2 cathode materials are significantly improved to enable rapid magnesium storage. Fe cations can activate the cathode surface and weaken the Coulombic interactions between Mg2+ 2+ and anions in the host material. Oxygen vacancies can provide active adsorption sites for Mg2+ 2+ and MgCl+ + to avoid slow solid-state diffusion and thus accelerate magnesium storage kinetics. Ex-situ XRD and XPS indicate that Fe-doped rutile TiO2 2 cathode materials undergo the energy storage mechanism of Mg2+ 2+ adsorption/diffusion without phase transition or significant lattice expansion.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Enhanced mechanism of the photo-thermochemical cycle based on effective Fe-doping TiO2 films and DFT calculations
    Xu, Chenyu
    Zhang, Yanwei
    Chen, Jingche
    Lin, Jiayi
    Zhang, Xuhan
    Wang, Zhihua
    Zhou, Junhu
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 204 : 324 - 334
  • [22] Study of the anatase to rutile transformation kinetics of the modified TiO2
    Grzmil, Barbara
    Glen, Marta
    Kic, Bogumil
    Lubkowski, K.
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2013, 15 (02) : 73 - 80
  • [23] The effects of antimony doping on the surface structure of rutile TiO2(110)
    Bechstein, Ralf
    Kitta, Mitsunori
    Schuette, Jens
    Onishi, Hiroshi
    Kuehnle, Angelika
    NANOTECHNOLOGY, 2009, 20 (26)
  • [24] High Photocatalytic Activity of Rutile TiO2 Induced by Iodine Doping
    He, Jingfu
    Liu, Qinghua
    Sun, Zhihu
    Yan, Wensheng
    Zhang, Guobin
    Qi, Zeming
    Xu, Pengshou
    Wu, Ziyu
    Wei, Shiqiang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (13): : 6035 - 6038
  • [25] Rutile TiO2 Submicroboxes with Superior Lithium Storage Properties
    Yu, Xin-Yao
    Wu, Hao Bin
    Yu, Le
    Ma, Fei-Xiang
    Lou, Xiong Wen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (13) : 4001 - 4004
  • [26] Electrochemical charge storage of flowerlike rutile TiO2 nanorods
    Qiao, Hui
    Tao, Dan
    Wang, Yawen
    Cai, Yibing
    Huang, Fenglin
    Yang, Xiao
    Wei, Jinzhu
    Wei, Qufu
    CHEMICAL PHYSICS LETTERS, 2010, 490 (4-6) : 180 - 183
  • [27] Reversible resistance switching by excess hydrogen doping in rutile TiO2
    Lim, GyeongCheol
    Maesato, Mitsuhiko
    Nakayama, Ryo
    Lim, Dae-Woon
    Kitagawa, Hiroshi
    APPLIED PHYSICS EXPRESS, 2020, 13 (10)
  • [28] Doping and compensation in Nb-doped anatase and rutile TiO2
    Lee, Hsin-Yi
    Robertson, John
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (21)
  • [29] Effect of Doping on Rutile TiO2 Surface Stability and Crystal Shapes
    Gomer, Anna
    Bredow, Thomas
    CHEMISTRYOPEN, 2022, 11 (06)
  • [30] Aluminum Storage in Rutile-based TiO2 Nanoparticles
    Zhao, Tianyu
    Ojeda, Manuel
    Xuan, Jin
    Shu, Zhan
    Wang, Huizhi
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4829 - 4833