Hyperspectral Blind Unmixing Using a Double Deep Image Prior

被引:3
|
作者
Zhou, Chao [1 ]
Rodrigues, Miguel R. D. [1 ]
机构
[1] UCL, Dept Elect & Elect Engn, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Convolutional neural networks (CNNs); deep image prior (DIP); hyperspectral image (HSI); linear unmixing; nonlinear unmixing; SOURCE SEPARATION; ALGORITHM; MODEL;
D O I
10.1109/TNNLS.2023.3294714
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rise of machine learning, hyperspectral image (HSI) unmixing problems have been tackled using learning-based methods. However, physically meaningful unmixing results are not guaranteed without proper guidance. In this work, we propose an unsupervised framework inspired by deep image prior (DIP) that can be used for both linear and nonlinear blind unmixing models. The framework consists of three modules: 1) an Endmember estimation module using DIP (EDIP); 2) an Abundance estimation module using DIP (ADIP); and 3) a mixing module (MM). EDIP and ADIP modules generate endmembers and abundances, respectively, while MM produces a reconstruction of the HSI observations based on the postulated unmixing model. We introduce a composite loss function that applies to both linear and nonlinear unmixing models to generate meaningful unmixing results. In addition, we propose an adaptive loss weight strategy for better unmixing results in nonlinear mixing scenarios. The proposed methods outperform state-of-the-art unmixing algorithms in extensive experiments conducted on both synthetic and real datasets.
引用
收藏
页码:16478 / 16492
页数:15
相关论文
共 50 条
  • [11] Hyperspectral Image Superresolution Based on Double Regularization Unmixing
    Zou, Changzhong
    Xia, Youshen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1022 - 1026
  • [12] Deep Ensembles for Hyperspectral Image Data Classification and Unmixing
    Nalepa, Jakub
    Myller, Michal
    Tulczyjew, Lukasz
    Kawulok, Michal
    REMOTE SENSING, 2021, 13 (20)
  • [13] Blind Image Deconvolution Using Variational Deep Image Prior
    Huo D.
    Masoumzadeh A.
    Kushol R.
    Yang Y.-H.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11472 - 11483
  • [14] Weighted Total Variation Regularized Blind Unmixing for Hyperspectral Image
    Song, Hanjie
    Wu, Xing
    Zou, Anqi
    Liu, Yang
    Zou, Yongliao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [15] HYPERSPECTRAL IMAGE UNMIXING USING AUTOENCODER CASCADE
    Guo, Rui
    Wang, Wei
    Qi, Hairong
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [16] Using a Panchromatic Image to Improve Hyperspectral Unmixing
    Rebeyrol, Simon
    Deville, Yannick
    Achard, Veronique
    Briottet, Xavier
    May, Stephane
    REMOTE SENSING, 2020, 12 (17) : 1 - 32
  • [17] Blind Hyperspectral Unmixing Using Autoencoders: A Critical Comparison
    Palsson, Burkni
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 1340 - 1372
  • [18] Hyperspectral unmixing using deep convolutional autoencoder
    Elkholy, Menna M.
    Mostafa, Marwa
    Ebied, Hala M.
    Tolba, Mohamed F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4797 - 4817
  • [19] Blind Hyperspectral Unmixing Using Autoencoders: A Critical Comparison
    Palsson, Burkni
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1340 - 1372
  • [20] Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior
    Zheng, Yuhui
    Wu, Feiyang
    Shim, Hiuk Jae
    Sun, Le
    REMOTE SENSING, 2019, 11 (24)