Study on optimization of mixing ratio and shrinkage property of alkali-activated ultrafine fly ash-slag mortar

被引:0
|
作者
Wang, Jun [1 ]
Wang, Haofan [1 ]
Li, Zhaoxi [1 ]
Yan, Jun [1 ]
机构
[1] Northeast Forestry Univ, Sch Civil Engn & Transportat, Harbin 150040, Peoples R China
来源
关键词
Response surface method; Basalt fiber; Alkali-activated mortar; Drying shrinkage; Environmental benefits; BLAST-FURNACE SLAG; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; PORTLAND-CEMENT; GEOPOLYMER; BINDERS; BASALT; TEMPERATURE; PERFORMANCE; EMISSIONS;
D O I
10.1016/j.mtcomm.2024.110808
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Alkali-activated cementitious materials have received widespread attention due to their favorable mechanical properties and environmental benefits. However, there are fewer studies on the optimal mixing ratio of alkaliactivated ultrafine fly ash-slag (AAUS) mortar, and shrinkage cracking is a critical issue that hinders its further application. Based on this, the study used the response surface method (RSM) to optimize the mixing ratio of AAUS mortar, explored the effect of basalt fibers (BF) on the compressive strength and drying shrinkage of AAUS mortar, and finally analyzed the energy consumption and carbon emission of fiber-reinforced AAUS mortar. The experiment used X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques for microstructural characterization to research the microstructure and mineral phase changes of AAUS mortar. The results demonstrated that the 28d compressive strength of AAUS mortar reached its maximum when the substitution ratio of ultrafine fly ash (UFA) was 14.5 %, the alkali equivalent was 10.34 %, and the modulus of the activator was 1.6, based on the RSM; BF of appropriate length and volume fraction can productively improve the compressive strength of AAUS mortar and limit drying shrinkage; AAUS mortar with optimal mixing ratio can be sufficiently activated by alkali activator to construct a considerable number of C-(A)-S-H gels to establish a highdensity microstructure; the carbon emission of the B124 test group was reduced by 61.1 % compared with ordinary Portland cement (OPC) mortar.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Micromechanical analysis of alkali-activated fly ash-slag paste subjected to elevated temperatures
    Tu, Wenlin
    Fang, Guohao
    Dong, Biqin
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2024, 153
  • [32] Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate
    You, Nanqiao
    Liu, Yongchao
    Gu, Dawei
    Ozbakkaloglu, Togay
    Pan, Jinlong
    Zhang, Yamei
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 242
  • [33] Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars
    Aiken, Timothy A.
    Kwasny, Jacek
    Zhou, Zuyao
    Mcpolin, Daniel
    Sha, Wei
    MRS ADVANCES, 2023, 8 (22) : 1266 - 1272
  • [34] Prediction of the autogenous shrinkage and microcracking of alkali-activated slag and fly ash concrete
    Li, Zhenming
    Lu, Tianshi
    Chen, Yun
    Wu, Bei
    Ye, Guang
    CEMENT & CONCRETE COMPOSITES, 2021, 117
  • [35] Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars
    Timothy A. Aiken
    Jacek Kwasny
    Zuyao Zhou
    Daniel McPolin
    Wei Sha
    MRS Advances, 2023, 8 : 1266 - 1272
  • [36] A Low-Autogenous-Shrinkage Alkali-Activated Slag and Fly Ash Concrete
    Li, Zhenming
    Yao, Xingliang
    Chen, Yun
    Lu, Tianshi
    Ye, Guang
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [37] Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag
    Huang, Dunwen
    Yuan, Qiaoming
    Chen, Peng
    Tian, Xiang
    Peng, Hui
    JOURNAL OF BUILDING ENGINEERING, 2022, 62
  • [38] Shrinkage Characteristics of Alkali-Activated Slag Mortar with SAP
    Choi, Young Cheol
    Moon, Gyu Don
    Oh, Sungwoo
    Jung, Sang Hwa
    Lee, Kwang Myong
    8TH RILEM INTERNATIONAL CONFERENCE ON MECHANISMS OF CRACKING AND DEBONDING IN PAVEMENTS, 2016, 13 : 313 - 318
  • [39] Effect of CaO on the shrinkage and microstructure of alkali-activated slag/ fly ash microsphere
    Zhang, Liu
    Ma, Yuwei
    Ouyang, Xiaowei
    Fu, Jiyang
    Li, Zongjin
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 421
  • [40] Micromechanical analysis of interfacial transition zone in alkali-activated fly ash-slag concrete
    Fang, Guohao
    Wang, Qiang
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2021, 119 (119):