A novel ensemble forecasting algorithm based on distributed deep learning network

被引:0
|
作者
Ma T. [1 ]
Wang F. [1 ]
Tian Y. [1 ]
Ma Y. [1 ]
Ma X. [1 ]
机构
[1] School of Mathematical and Computer Science, Ningxia Normal University, Guyuan
关键词
Big data; Distributed deep learning network; Ensemble; Forecasting; Wind time series;
D O I
10.23940/ijpe.19.11.p11.29272935
中图分类号
学科分类号
摘要
This paper proposes an ensemble model based on distribution deep learning network. The ensemble model is composed of deep belief network (DBN) for reconstructing original data, and the bidirectional long short-term memory (BLSTM) method is used for prediction due to its good results in big data applications. The dynamic weighting strategies are proposed and applied to the sub models of the ensemble by a weighted least square method. The weight update with variable training sets and the predictions for each ensemble are obtained from the distributed computing engine Apache Spark. The performance of the proposed model is evaluated on wind data on the wind farm of the Hexi Corridor in China. The simulation results show that the dynamic ensemble algorithm performs well, which is a very valuable result for the forecasting of big data time series. Furthermore, the results are successfully compared with back propagation neural Network (BPNN), LSTM, BLSTM, and stacked LSTMs with memory between batches (SBLSTM), improving the accuracy of prediction. © 2019 Totem Publisher, Inc. All rights reserved.
引用
收藏
页码:2927 / 2935
页数:8
相关论文
共 50 条
  • [31] Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market
    Hadjout, D.
    Torres, J.F.
    Troncoso, A.
    Sebaa, A.
    Martínez-Álvarez, F.
    Energy, 2022, 243
  • [32] Parallel learning evolutionary algorithm based on neural network ensemble
    Xiao, Sha
    Yu, Dong
    Li, Yibin
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 70 - 74
  • [33] Ensemble Deep Learning for Regression and Time Series Forecasting
    Qiu, Xueheng
    Zhang, Le
    Ren, Ye
    Suganthan, P. N.
    Amaratunga, Gehan
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ENSEMBLE LEARNING (CIEL), 2014, : 21 - 26
  • [34] Tourism demand forecasting: An ensemble deep learning approach
    Sun, Shaolong
    Li, Yanzhao
    Guo, Ju-e
    Wang, Shouyang
    TOURISM ECONOMICS, 2022, 28 (08) : 2021 - 2049
  • [35] Deep Learning Based Densely Connected Network for Load Forecasting
    Li, Zhuoling
    Li, Yuanzheng
    Liu, Yun
    Wang, Ping
    Lu, Renzhi
    Gooi, Hoay Beng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (04) : 2829 - 2840
  • [36] A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation
    Lotfi, Mohamed
    Javadi, Mohammad
    Osorio, Gerardo J.
    Monteiro, Claudio
    Catalao, Joao P. S.
    ENERGIES, 2020, 13 (01)
  • [37] A Novel Ensemble Model Based on an Advanced Optimization Algorithm for Wind Speed Forecasting
    Wang, Yukun
    Zhao, Aiying
    Wei, Xiaoxue
    Li, Ranran
    ENERGIES, 2023, 16 (14)
  • [38] EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features
    Zhuang, Jujuan
    Gao, Wanquan
    Su, Rui
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2024, 22 (01)
  • [39] Genetic Algorithm-based Optimization of Deep Neural Network Ensemble
    Feng, Xuanang
    Zhao, Jianing
    Kita, Eisuke
    REVIEW OF SOCIONETWORK STRATEGIES, 2021, 15 (01): : 27 - 47
  • [40] Genetic Algorithm-based Optimization of Deep Neural Network Ensemble
    Xuanang Feng
    Jianing Zhao
    Eisuke Kita
    The Review of Socionetwork Strategies, 2021, 15 : 27 - 47