Modeling and analysis of dielectric materials by using gradient-descent optimization method

被引:5
|
作者
Alagoz B.B. [1 ]
Alisoy H.Z. [2 ]
Koseoglu M. [1 ]
Alagoz S. [3 ]
机构
[1] Electrical-Electronics Engineering, Inonu University
[2] Electronics and Communication Engineering, Namik Kemal University
[3] Department of Physics, Inonu University
来源
Alagoz, B.B. (baykant.alagoz@inonu.edu.tr) | 1600年 / World Scientific卷 / 08期
关键词
Dielectric materials; insulators; modeling; numerical analysis;
D O I
10.1142/S1793962317500143
中图分类号
学科分类号
摘要
This study presents a numerical method based on parallel RC equivalent circuit model fitting methodology for analysis and modeling of dielectric materials. The proposed method employs gradient-descent optimization method (GDOM) to estimate parallel RC equivalent circuit model from current waveforms by minimizing sum of squared difference (SSD) error. Estimation of parallel RC equivalent circuit parameters from measured current waveforms provides a useful tool for identification, simulation and analysis of dielectric materials. Moreover, applications of the proposed method for time and frequency analyses of dielectric materials are demonstrated numerically. Numerical simulations were presented to discuss efficiency of the proposed method for modeling, analysis and monitoring of insulator materials. © 2017 World Scientific Publishing Company.
引用
收藏
相关论文
共 50 条
  • [31] Using Stochastic Gradient-Descent Scheme in Appearance Model Based Face Tracking
    Li, Zhidong
    Chen, Jing
    Chong, Adrian
    Yu, Zhenghua
    Schraudolph, Nicol N.
    2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 641 - 644
  • [32] Parameter estimation of various Hodgkin-Huxley-type neuronal models using a gradient-descent learning method
    Doi, SJ
    Onoda, Y
    Kumagai, S
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1685 - 1688
  • [33] An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems
    Mariño, IP
    Míguez, J
    PHYSICS LETTERS A, 2006, 351 (4-5) : 262 - 267
  • [34] A gradient-descent adjoint method for the reconstruction of boundary conditions in a river flow nitrification model
    Gordillo, Geovanny
    Morales-Hernandez, Mario
    Garcia-Navarro, Pilar
    ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2020, 22 (02) : 381 - 397
  • [35] A Measurement-based Gradient-descent Method to Optimally Dispatch DER Reactive Power
    Nowak, Severin
    Chen, Yu Christine
    Wang, Liwei
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 28 - 32
  • [36] Analysis of the Gradient-Descent Total Least-Squares Adaptive Filtering Algorithm
    Arablouei, Reza
    Werner, Stefan
    Dogancay, Kutluyil
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (05) : 1256 - 1264
  • [37] A Descent Conjugate Gradient Method for Optimization Problems
    Semiu, Ayinde
    Idowu, Osinuga
    Adesina, Adio
    Sunday, Agboola
    Joseph, Adelodun
    Uchenna, Uka
    Olufisayo, Awe
    IAENG International Journal of Applied Mathematics, 2024, 54 (09) : 1765 - 1775
  • [38] Research on Gradient-Descent Extended Kalman Attitude Estimation Method for Low-Cost MARG
    Liu, Ning
    Qi, Wenhao
    Su, Zhong
    Feng, Qunzhuo
    Yuan, Chaojie
    MICROMACHINES, 2022, 13 (08)
  • [39] Deterministic Gradient-Descent Learning of Linear Regressions: Adaptive Algorithms, Convergence Analysis and Noise Compensation
    Liu, Kang-Zhi
    Gan, Chao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 7867 - 7877
  • [40] Robustness of Iteratively Pre-Conditioned Gradient-Descent Method: The Case of Distributed Linear Regression Problem
    Chakrabarti, Kushal
    Gupta, Nirupam
    Chopra, Nikhil
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06): : 2180 - 2185