Unveiling the cellular microstructure-property relations in martensitic stainless steel via laser powder bed fusion

被引:1
|
作者
Wu, Lingzhi [1 ]
Zhang, Cong [1 ]
Khan, Dil Faraz [2 ]
Zhang, Ruijie [1 ,4 ]
Wang, Yongwei [1 ]
Jiang, Xue [1 ,3 ,4 ]
Yin, Haiqing [1 ,3 ,4 ]
Qu, Xuanhui [1 ,3 ,4 ,5 ]
Liu, Geng [6 ]
Su, Jie [6 ]
机构
[1] Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Bannu, Dept Phys, Bannu 28100, Pakistan
[3] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[4] Univ Sci & Technol Beijing, Beijing Key Lab Mat Genome Engn, Beijing 100083, Peoples R China
[5] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
[6] Cent Iron & Steel Res Inst, Inst Special Steel Res, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
laser powder bed fusion; martensitic stainless steel; cellular microstructure; mechanical properties; strengthening mechanism; MECHANICAL-PROPERTIES; STRENGTHENING BEHAVIOR; PROCESS PARAMETERS; ENERGY DENSITY; SCANNING SPEED; HEAT-TREATMENT; MELTING SLM; EVOLUTION; DUCTILITY; HARDNESS;
D O I
10.1007/s12613-024-2947-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation. However, there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel. This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF. The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction, but it reduces the average size of the cellular microstructure from 0.60 to 0.35 mu m. The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample, resulting in inadequate fusion and keyhole defects respectively. The optimal scanning speed for fabricating samples was determined to be 800 mm/s, which obtained the highest room temperature tensile strength and elongation, with the ultimate tensile strength measured at (1088.3 +/- 2.0) MPa and the elongation of (16.76 +/- 0.10)%. Furthermore, the mechanism of the evolution of surface morphology, defects, and energy input were clarified, and the relationship between cellular microstructure size and mechanical properties was also established.
引用
收藏
页码:2476 / 2487
页数:12
相关论文
共 50 条
  • [21] Gas Atomization of Duplex Stainless Steel Powder for Laser Powder Bed Fusion
    Cui, Chengsong
    Stern, Felix
    Ellendt, Nils
    Uhlenwinkel, Volker
    Steinbacher, Matthias
    Tenkamp, Jochen
    Walther, Frank
    Fechte-Heinen, Rainer
    MATERIALS, 2023, 16 (01)
  • [22] Predictive models for fatigue property of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS & DESIGN, 2018, 145 : 42 - 54
  • [23] Creating heterostructures via laser powder bed fusion using titanium and stainless steel mixtures
    Xu, Dingmeng
    Yang, Wuxin
    Behera, Malaya Prasad
    Singamneni, Sarat
    Hodgson, Michael A.
    Cao, Peng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 915
  • [24] Laser powder bed fusion of 2507 duplex stainless steel: Microstructure, mechanical properties, and corrosion performance
    Zhu, Xin-xin
    Dong, Liang
    Li, Gan
    Li, Xing-gang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 913
  • [25] Process and feedstock driven microstructure for laser powder bed fusion of 316L stainless steel
    Heiden, Michael J.
    Jensen, Scott C.
    Koepke, Josh R.
    Saiz, David J.
    Dickens, Sara M.
    Jared, Bradley H.
    MATERIALIA, 2022, 21
  • [26] Laser powder bed fusion of Inconel 718 on 316 stainless steel
    Chen, Wei-Ying
    Zhang, Xuan
    Li, Meimei
    Xu, Ruqing
    Zhao, Cang
    Sun, Tao
    ADDITIVE MANUFACTURING, 2020, 36
  • [27] Machine learning for advancing laser powder bed fusion of stainless steel
    Abd-Elaziem, Walaa
    Elkatatny, Sally
    Sebaey, Tamer A.
    Darwish, Moustafa A.
    El-Baky, Marwa A. Abd
    Hamada, Atef
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 4986 - 5016
  • [28] Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review
    Zai, Le
    Zhang, Chaoqun
    Wang, Yiqiang
    Guo, Wei
    Wellmann, Daniel
    Tong, Xin
    Tian, Yingtao
    METALS, 2020, 10 (02)
  • [29] Relationship of Scan Strategy on Microstructure and Residual Stress of Martensitic Stainless Steel SUS420J2 Fabricated by Laser Powder Bed Fusion
    Taka, Takeaki
    Takubo, Ryosuke
    Takesue, Shogo
    Morita, Tatsuro
    Zairyo/Journal of the Society of Materials Science, Japan, 2024, 73 (09) : 743 - 750
  • [30] Tailoring deformation-induced martensitic transformation through cellular engineering in laser powder bed fusion processed 316L stainless steel
    Jeong, Sang Guk
    Kim, Eun Seong
    Kwon, Hyeonseok
    Ahn, Soung Yeoul
    Choe, Jungho
    Karthik, Gangaraju Manogna
    Heo, Yoon-Uk
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 898