Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images

被引:0
|
作者
Jiang, Luan [1 ,2 ]
Hu, Xiaoxin [3 ]
Xiao, Qin [3 ]
Gu, Yajia [3 ]
Li, Qiang [1 ,2 ]
机构
[1] Center for Advanced Medical Imaging Technology, Division of Life Sciences, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Shanghai,201210, China
[2] Cooperate Research Center, Shanghai United Imaging Healthcare Co., Ltd., No. 2258 Chengbei Road, Shanghai,201807, China
[3] Department of Radiology, Shanghai Cancer Hospital of FuDan University, No. 270 DongAn Road, Shanghai,200032, China
来源
Medical Physics | 2017年 / 44卷 / 06期
关键词
461.1 Biomedical Engineering - 701.2 Magnetism: Basic Concepts and Phenomena - 731 Automatic Control Principles and Applications - 746 Imaging Techniques - 914.1 Accidents and Accident Prevention - 921.5 Optimization Techniques;
D O I
暂无
中图分类号
学科分类号
摘要
46
引用
收藏
页码:2400 / 2414
相关论文
共 50 条
  • [21] Segmentation strategies for breast tumors from dynamic MR images
    LucasQuesada, FA
    Sinha, U
    Sinha, S
    JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1996, 6 (05): : 753 - 763
  • [22] Dynamic contrast enhanced MR
    Miles, KA
    CLINICAL RADIOLOGY, 1996, 51 (01) : 78 - 78
  • [23] An improved semantic segmentation for breast lesion from dynamic contrast enhanced MRI images using deep learning
    Star, C. Sahaya Pushpa Sarmila
    Milton, A.
    Inbamalar, T. M.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [24] Fully Automatic Thoracic Cavity Segmentation in Dynamic Contrast Enhanced Breast MRI Using Deep Convolutional Neural Networks
    Berchiolli, Marco
    Wolfram, Susann
    Balachandran, Wamadeva
    Gan, Tat-Hean
    Kovacs, Levente Adalbert
    Szilagyi, Laszlo
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [25] Computerized Segmentation and Characterization of Breast Lesions in Dynamic Contrast-Enhanced MR Images Using Fuzzy c-Means Clustering and Snake Algorithm
    Pang, Yachun
    Li, Li
    Hu, Wenyong
    Peng, Yanxia
    Liu, Lizhi
    Shao, Yuanzhi
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2012, 2012
  • [26] Reading protocol for dynamic contrast-enhanced MR images of the breast: Sensitivity and specificity analysis
    Warren, RML
    Pointon, L
    Thompson, D
    Hoff, R
    Gilbert, FJ
    Padhani, A
    Easton, D
    Lakhani, SR
    Leach, MO
    RADIOLOGY, 2005, 236 (03) : 779 - 788
  • [27] A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images
    Chen, WJ
    Giger, ML
    Bick, U
    ACADEMIC RADIOLOGY, 2006, 13 (01) : 63 - 72
  • [28] Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images
    Anzalone, Nicoletta
    Castellano, Antonella
    Cadioli, Marcello
    Conte, Gian Marco
    Cuccarini, Valeria
    Bizzi, Alberto
    Grimaldi, Marco
    Costa, Antonella
    Grillea, Giovanni
    Vitali, Paolo
    Aquino, Domenico
    Terreni, Maria Rosa
    Torri, Valter
    Erickson, Bradley J.
    Caulo, Massimo
    RADIOLOGY, 2018, 287 (03) : 933 - 943
  • [29] Endocardium and epicardium segmentation in MR images based on developed otsu and dynamic programming
    Xu, Shengzhou
    Pei, Chengdan
    Hu, Huaifei
    Sensors and Transducers, 2014, 167 (03): : 117 - 122
  • [30] A segmentation method based on dynamic programming for breast mass in MRI images
    Liu, Jihong
    Ma, Weina
    Lee, Soo-Young
    MEDICAL BIOMETRICS, PROCEEDINGS, 2007, 4901 : 307 - +