Air pollution prediction using LSTM deep learning and metaheuristics algorithms

被引:0
|
作者
Drewil G.I. [1 ]
Al-Bahadili R.J. [1 ]
机构
[1] Computer Engineering Department, University of Technology, Baghdad
来源
Measurement: Sensors | 2022年 / 24卷
关键词
Air pollution; Deep learning; Genetic algorithm (GA); Long short-term memory (LSTM); Time series data;
D O I
10.1016/j.measen.2022.100546
中图分类号
学科分类号
摘要
Air pollution is a leading cause of health concerns and climate change, one of humanity's most dangerous problems. This problem has been exacerbated by an overabundance of automobiles, industrial output pollution, transportation fuel consumption, and energy generation. As a result, air pollution forecasting has become vital. As a result of the large amount and variety of data acquired by air pollution monitoring stations, air pollution forecasting has become a popular topic, particularly when applying deep learning models of long short-term memory (LSTM). The ability of these models to learn long-term dependencies in air pollution data sets them apart. However, LSTM models using many other statistical and machine learning approaches may not offer adequate prediction results due to noisy data and improper hyperparameter settings. As a result, to define the pollution levels for a group of contaminants, an ideal representation of the LSTM is required. To address the problem of identifying the best hyperparameters for the LSTM model, In this paper, we propose a model based on the Genetic Algorithm (GA) algorithm as well as the long short-term memory (LSTM) deep learning algorithm. The model aims to find the best hyperparameters for LSTM and the pollution level for the next day using four types of pollutants PM10, PM2.5, CO, and NOX. The proposed model modified by optimization algorithms shows more accurate results with less experience and more speed than machine learning models and LSTM models. © 2022 The Authors
引用
收藏
相关论文
共 50 条
  • [31] Analysis and Prediction of Heart Stroke Using Lstm Deep Learning Approach
    Charles Sturt University, School of Computing, Mathematics and Engineering, Bathurst
    NSW
    2795, Australia
    不详
    5660, Bangladesh
    不详
    Int. Conf. Digit. Image Comput.: Techniques Appl., DICTA, 2023, (340-347):
  • [32] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [33] Deep learning-based air pollution prediction model using modified gated recurrent unit
    Periyanan, A.
    Rajan, S. Palanivel
    GLOBAL NEST JOURNAL, 2024, 26 (06):
  • [34] Hybrid Deep Learning-Based Air Pollution Prediction and Index Classification Using an Optimization Algorithm
    Kutala, Sreenivasulu
    Awari, Harshavardhan
    Velu, Sangeetha
    Anthonisamy, Arun
    Bathula, Naga Jyothi
    Inthiyaz, Syed
    AIMS ENERGY, 2023, 11 (04) : 551 - 575
  • [35] Air pollution prediction and hotspot detection using machine learning
    Bhatia, Shailee
    Sachdeva, Shelly
    Goswami, Puneet
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2022, 25 (07) : 1553 - 1564
  • [36] Hybrid Deep Learning-Based Air Pollution Prediction and Index Classification Using an Optimization Algorithm
    Kutala, Sreenivasulu
    Awari, Harshavardhan
    Velu, Sangeetha
    Anthonisamy, Arun
    Bathula, Naga Jyothi
    Inthiyaz, Syed
    AIMS ENVIRONMENTAL SCIENCE, 2024, 11 (04) : 551 - 575
  • [37] Deep Learning Techniques for Air Pollution
    Tripathi, Kshitij
    Pathak, Pooja
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 1013 - 1020
  • [38] Using Deep Learning Algorithms for CPAs' Going Concern Prediction
    Jan, Chyan-Long
    INFORMATION, 2021, 12 (02) : 1 - 22
  • [39] Trends in using deep learning algorithms in biomedical prediction systems
    Wang, Yanbu
    Liu, Linqing
    Wang, Chao
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [40] A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms
    Hamayel, Mohammad J. J.
    Owda, Amani Yousef
    AI, 2021, 2 (04) : 477 - 496