Applications of fractal-type kernels in Gaussian process regression and support vector machine regression

被引:0
|
作者
Luor, Dah-Chin [1 ]
Liu, Chiao-Wen [2 ]
机构
[1] I Shou Univ, Dept Data Sci & Analyt, Kaohsiung 84001, Taiwan
[2] ROC Naval Acad, Sch Acad Studies, Dept Appl Sci, Kaohsiung 81345, Taiwan
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 08期
关键词
Gaussian process regression; Fractal-type covariance; Support vector regression; Fractal-type kernel; Fractal interpolation;
D O I
10.1007/s40314-024-02952-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A symmetric positive semi-definite kernel defined by fractal interpolation functions is introduced and then applied to Gaussian process(GP) regression and support vector machine(SVM) regression. An example is given using the Crude Oil WTI Futures daily highest prices as the raw data to show the performance of each regression model. We choose a sample subset D & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}<^>*$$\end{document} to build the models and show how well the prediction curve of each model fits the raw data. Optuna is applied in GP regression to estimate the parameters by maximizing the log marginal likelihood. In our results, the maximal log marginal likelihood of GP regression with the fractal-type kernel is larger than that of GP regressions with the Gaussian kernel and the Mat & eacute;rn kernel. On the other hand, we use Optuna to estimate the parameters in SVM regression by minimizing the mean squared error (MSE). Compared with the SVM regression models with the "rbf" kernel and the "poly" kernel in sklearn.svm.SVR, we see that SVM regression with the fractal-type kernel has the smallest MSE, and the prediction curve best fits the raw data.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] GPR Data Regression and Clustering by the Fuzzy Support Vector Machine and Regression
    Hosseinzadeh, Shahram
    Shaghaghi, Mehdi
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2020, 93 : 175 - 184
  • [22] Interval regression analysis using support vector machine and quantile regression
    Hwang, CH
    Hong, DH
    Na, E
    Park, H
    Shim, J
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 1, PROCEEDINGS, 2005, 3613 : 100 - 109
  • [23] Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression
    Sharifzadeh, Mandi
    Sikinioti-Lock, Alexandra
    Shah, Nilay
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 : 513 - 538
  • [24] A fuzzy model of support vector regression machine
    Hao, Pei-Yi
    Chiang, Jung-Hsien
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2007, 9 (01) : 45 - 50
  • [25] Interval Support Vector Machine in Regression Analysis
    Arjmandzadeh, Ameneh
    Effati, Sohrab
    Zamirian, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 565 - 571
  • [26] Polynomial smooth support vector machine for regression
    Zang, Fei
    Huang, Ting-Zhu
    Yuan, Yu-Bo
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 365 - 368
  • [27] A fuzzy model of support vector regression machine
    Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan
    Int. J. Fuzzy Syst., 2007, 1 (45-50):
  • [28] A rough ν-twin support vector regression machine
    Zhenxia Xue
    Roxin Zhang
    Chuandong Qin
    Xiaoqing Zeng
    Applied Intelligence, 2018, 48 : 4023 - 4046
  • [29] On-line support vector machine regression
    Martin, M
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 282 - 294
  • [30] Prediction intervals for support vector machine regression
    Seok, K
    Hwang, C
    Cho, D
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (10) : 1887 - 1898