New minimum-distance bounds for linear codes over small fields

被引:0
|
作者
Daskalov, R.N.
Gulliver, T.A.
机构
来源
Problemy Peredachi Informatsii | 2001年 / 37卷 / 03期
关键词
Linear codes;
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
页码:24 / 33
相关论文
共 50 条
  • [41] Bounds on the Rate and Minimum Distance of Codes with Availability
    Balaji, S. B.
    Kumar, P. Vijay
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [42] New lower bounds for the minimum distance of generalized algebraic geometry codes
    Picone, Alberto
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (06) : 1164 - 1172
  • [43] Generalized minimum-distance decoding of Euclidean-space codes and lattices
    Forney, GD
    Vardy, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 1992 - 2026
  • [44] Codes for Updating Linear Functions over Small Fields
    Ghosh, Suman
    Natarajan, Lakshmi
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2324 - 2328
  • [45] Bounds and Constructions for Linear Locally Repairable Codes over Binary Fields
    Wang, Anyu
    Zhang, Zhifang
    Lin, Dongdai
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2033 - 2037
  • [46] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42
  • [47] Minimum distance of linear codes and the α-invariant
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 190 - 207
  • [48] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [49] Some new bounds on LCD codes over finite fields
    Binbin Pang
    Shixin Zhu
    Xiaoshan Kai
    Cryptography and Communications, 2020, 12 : 743 - 755
  • [50] Some new bounds on LCD codes over finite fields
    Pang, Binbin
    Zhu, Shixin
    Kai, Xiaoshan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (04): : 743 - 755