Lie derivations of non-strongly maximal triangular UHF algebras

被引:0
|
作者
Wang, Lin [1 ]
Fang, Xiaochun [1 ]
机构
[1] Department of Mathematics, Tongji University, Shanghai 200092, China
来源
关键词
Mathematical operators - Theorem proving;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a study of Lie derivations of non-strongly maximal triangular UHF algebras. Results show that if L is a Lie derivation of a non-strongly maximal triangular UHF algebra T, then there exists an associative derivation D of T such that L = D + λ, where λ is a linear map of T into its center which annihilates brackets of operators.
引用
收藏
页码:280 / 284
相关论文
共 50 条
  • [31] THE STRUCTURE OF MODULE LIE DERIVATIONS ON TRIANGULAR BANACH ALGEBRAS
    Miri, M. R.
    Nasrabadi, E.
    Ghorchizadeh, A. R.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2023, 11 (01):
  • [32] Generalized Lie n-derivations of triangular algebras
    Benkovic, Dominik
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5294 - 5302
  • [33] Local derivations on solvable Lie algebras of maximal rank
    Kudaybergenov, Karimbergen
    Omirov, Bakhrom
    Kurbanbaev, Tuuelbay
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 3816 - 3826
  • [34] Nonlinear Lie triple derivations by local actions on triangular algebras
    Zhao, Xingpeng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (03)
  • [35] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    Ansari, Mohammad Afajal
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3767 - 3776
  • [36] Generalized Lie n-derivations on arbitrary triangular algebras
    Yuan, He
    Liu, Zhuo
    OPEN MATHEMATICS, 2023, 21 (01):
  • [37] ON MULTIPLICATIVE LIE n-HIGHER DERIVATIONS OF TRIANGULAR ALGEBRAS
    Ashraf, Mohammad
    Jabeen, Aisha
    Ansari, Mohammad Afajal
    Akhtar, Mohd Shuaib
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 995 - 1017
  • [38] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Mohammad Ashraf
    Mohd Shuaib Akhtar
    Mohammad Afajal Ansari
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3767 - 3776
  • [39] Lie higher derivations on triangular algebras without assuming unity
    Liang, Xinfeng
    Ren, Dandan
    FILOMAT, 2024, 38 (03) : 919 - 937
  • [40] Nonlinear generalized Lie n-derivations on triangular algebras
    Lin, Wenhui
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (06) : 2368 - 2383