Parameters estimation of continuous system using improved hybrid genetic algorithm

被引:0
|
作者
Shi, Haiyan [1 ]
Hou, Zhixiang [1 ]
机构
[1] College of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410076, China
来源
Journal of Information and Computational Science | 2008年 / 5卷 / 05期
关键词
Genetic algorithms;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to improve the performance of genetic algorithm, a new hybrid genetic algorithm is provided firstly in this paper. It adds up the advantages of the genetic algorithm and gradient algorithm, and uses the results of gradient algorithm improving the populations of genetic algorithm, and selects the best value as the starting point of gradient algorithm next time by comparing the best individual of genetic algorithm with the last results of gradient algorithm. Parameter estimation of continuous system is finished by the improved hybrid genetic algorithm, and simulation results show it is more quickly than the simple genetic algorithm and owes better anti-noise ability; at the same time, it improves the defects of genetic algorithm with worse local searching ability, and it provides a new method for the parameters estimation of continuous system. 1548-7741/Copyright © 2008 Binary Information Press October 2008.
引用
收藏
页码:2285 / 2291
相关论文
共 50 条
  • [31] AN IMPROVED REAL HYBRID GENETIC ALGORITHM
    Ji, Weidong
    Wang, Jianhua
    Zhang, Jun
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2014, 21 (05): : 979 - 986
  • [32] An improved real hybrid genetic algorithm
    Poboljšani stvarni hibridni genetski algoritam
    Ji, Weidong (kingjwd@126.com), 1600, Strojarski Facultet (21):
  • [33] Parameter estimation of a heating system using a genetic algorithm
    Ahmad, M
    Zhang, L
    Readle, JC
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 195 - 200
  • [34] Optimizing parameters for machining general continuous forms using genetic algorithm
    Su, CT
    Chen, MC
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 1997, 4 (02): : 103 - 114
  • [35] Tuning of the structure and parameters of neural network using an improved genetic algorithm
    Lam, HK
    Ling, SH
    Leung, FHF
    Tam, PKS
    IECON'01: 27TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, 2001, : 25 - 30
  • [36] Optimization of Module Parameters for PV Power Estimation Using a Hybrid Algorithm
    Huang, Yann-Chang
    Huang, Chao-Ming
    Chen, Shin-Ju
    Yang, Sung-Pei
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (04) : 2210 - 2219
  • [37] Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    Leung, FHF
    Lam, HK
    Ling, SH
    Tam, PKS
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01): : 79 - 88
  • [38] Estimation of Coalescence Parameters in an Agitated Extraction Column Using a Hybrid Algorithm
    Kabouche, Azeddine
    Meniai, Abdeslam-Hassen
    Hasseine, Abdelmalek
    CHEMICAL ENGINEERING & TECHNOLOGY, 2011, 34 (05) : 784 - 790
  • [39] Improved Reservoir Operation Using Hybrid Genetic Algorithm and Neurofuzzy Computing
    Panuwat Pinthong
    Ashim Das Gupta
    Mukand Singh Babel
    Sutat Weesakul
    Water Resources Management, 2009, 23 : 697 - 720
  • [40] Improved Reservoir Operation Using Hybrid Genetic Algorithm and Neurofuzzy Computing
    Pinthong, Panuwat
    Gupta, Ashim Das
    Babel, Mukand Singh
    Weesakul, Sutat
    WATER RESOURCES MANAGEMENT, 2009, 23 (04) : 697 - 720