An Efficient Ensemble Approach for Brain Tumors Classification Using Magnetic Resonance Imaging

被引:1
|
作者
Saeed, Zubair [1 ,2 ]
Torfeh, Tarraf [3 ]
Aouadi, Souha [3 ]
Ji, Xiuquan [1 ,2 ]
Bouhali, Othmane [2 ,4 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77840 USA
[2] Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar
[3] Hamad Med Corp, Natl Ctr Canc Care & Res, Dept Radiat Oncol, Doha 3050, Qatar
[4] Hamad Bin Khalifa Univ, Coll Sci & Engn, Quantum Comp Ctr, Dept Elect Engn, Doha 34110, Qatar
关键词
deep learning; deep convolutional neural networks; magnetic resonance imaging; ensemble model; state-of-the-art; learning rates; batch sizes;
D O I
10.3390/info15100641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tumors in the brain can be life-threatening, making early and precise detection crucial for effective treatment and improved patient outcomes. Deep learning (DL) techniques have shown significant potential in automating the early diagnosis of brain tumors by analyzing magnetic resonance imaging (MRI), offering a more efficient and accurate approach to classification. Deep convolutional neural networks (DCNNs), which are a sub-field of DL, have the potential to analyze rapidly and accurately MRI data and, as such, assist human radiologists, facilitating quicker diagnoses and earlier treatment initiation. This study presents an ensemble of three high-performing DCNN models, i.e., DenseNet169, EfficientNetB0, and ResNet50, for accurate classification of brain tumors and non-tumor MRI samples. Our proposed ensemble model demonstrates significant improvements over various evaluation parameters compared to individual state-of-the-art (SOTA) DCNN models. We implemented ten SOTA DCNN models, i.e., EfficientNetB0, ResNet50, DenseNet169, DenseNet121, SqueezeNet, ResNet34, ResNet18, VGG16, VGG19, and LeNet5, and provided a detailed performance comparison. We evaluated these models using two learning rates (LRs) of 0.001 and 0.0001 and two batch sizes (BSs) of 64 and 128 and identified the optimal hyperparameters for each model. Our findings indicate that the ensemble approach outperforms individual models, having 92% accuracy, 90% precision, 92% recall, and an F1 score of 91% at a 64 BS and 0.0001 LR. This study not only highlights the superior performance of the ensemble technique but also offers a comprehensive comparison with the latest research.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Presurgical functional magnetic resonance imaging in patients with brain tumors
    Ravn, Soren
    Holmberg, Mats
    Sorensen, Preben
    Frokjaer, Jens B.
    Carl, Jesper
    ACTA RADIOLOGICA, 2016, 57 (01) : 82 - 89
  • [42] Multimodal Magnetic Resonance Imaging Evaluation of Primary Brain Tumors
    Treister, Daniel
    Kingston, Sara
    Hoque, Kristina E.
    Law, Meng
    Shiroishi, Mark S.
    SEMINARS IN ONCOLOGY, 2014, 41 (04) : 478 - 495
  • [43] Diffusion tensor magnetic resonance imaging of glial brain tumors
    Ferda, Jiri
    Kastner, Jan
    Mukensnabl, Petr
    Choc, Milan
    Horemuzova, Jana
    Ferdova, Eva
    Kreuzberg, Boris
    EUROPEAN JOURNAL OF RADIOLOGY, 2010, 74 (03) : 428 - 436
  • [44] MAGNETIC-RESONANCE-IMAGING OF PEDIATRIC BRAIN-TUMORS
    FITZ, C
    TOPICS IN MAGNETIC RESONANCE IMAGING, 1993, 5 (03) : 174 - 189
  • [45] Magnetic resonance imaging features of primary brain tumors in dogs
    Thomas, WB
    Wheeler, SJ
    Kramer, R
    Kornegay, JN
    VETERINARY RADIOLOGY & ULTRASOUND, 1996, 37 (01) : 20 - 27
  • [46] Diffusion tensor magnetic resonance imaging of glial brain tumors
    Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen, Czech Republic
    不详
    不详
    Eur. J. Radiol., 3 (428-436):
  • [47] Diagnosis and monitoring of the intraparenchymal brain tumors by magnetic resonance imaging
    Housni, A.
    Boujraf, S.
    Maaroufi, M.
    Benzagmout, M.
    Ezzaher, K.
    Tizniti, S.
    MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2014, 38 (06): : 469 - 477
  • [48] Brain Magnetic Resonance Imaging Classification Using Deep Learning Architectures with Gender and Age
    Wahlang, Imayanmosha
    Maji, Arnab Kumar
    Saha, Goutam
    Chakrabarti, Prasun
    Jasinski, Michal
    Leonowicz, Zbigniew
    Jasinska, Elzbieta
    SENSORS, 2022, 22 (05)
  • [49] Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
    Tandel, Gopal S.
    Balestrieri, Antonella
    Jujaray, Tanay
    Khanna, Narender N.
    Saba, Luca
    Suri, Jasjit S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 122 (122)
  • [50] Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling
    Tummala, Sudhakar
    Kadry, Seifedine
    Bukhari, Syed Ahmad Chan
    Rauf, Hafiz Tayyab
    CURRENT ONCOLOGY, 2022, 29 (10) : 7498 - 7511