Isotropic tensor fields in amorphous solids: Correlation functions of displacement and strain tensor fields

被引:0
|
作者
Wittmer, J. P. [1 ,2 ]
Baschnagel, J. [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Charles Sadron, F-67034 Strasbourg, France
[2] CNRS, F-67034 Strasbourg, France
关键词
Amorphous materials - Anisotropy - Continuum mechanics - Gaussian distribution - Lennard-Jones potential;
D O I
10.1103/PhysRevE.110.044604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Generalizing recent work on isotropic tensor fields in isotropic and achiral condensed matter systems from two to arbitrary dimensions we address both mathematical aspects assuming perfectly isotropic systems and applications focusing on correlation functions of displacement and strain field components in amorphous solids where isotropy may not hold. Various general points are exemplified using simulated polydisperse Lennard-Jones particles. It is shown that the strain components in reciprocal space have essentially a complex circularly symmetric Gaussian distribution albeit weak non-Gaussianity effects become visible for large wave numbers q where also anisotropy effects become relevant. The dynamical strain correlation functions are strongly nonmonotonic with respect to q with a minimum roughly at the breakdown of the continuum limit.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] TENSOR FIELDS WITH FINITE BASES
    BOCHNER, S
    ANNALS OF MATHEMATICS, 1951, 53 (03) : 400 - 411
  • [32] Statistical Analysis of Tensor Fields
    Xie, Yuchen
    Vemuri, Baba C.
    Ho, Jeffrey
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I, 2010, 6361 : 682 - 689
  • [33] Natural Operators on Tensor Fields
    Puninskii, E. G.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2014, 69 (05) : 225 - 228
  • [34] Singularities in nonuniform tensor fields
    Lavin, YM
    Levy, Y
    Hesselink, L
    VISUALIZATION '97 - PROCEEDINGS, 1997, : 59 - 66
  • [35] Visualization of Tensor Fields in Mechanics
    Hergl, Chiara
    Blecha, Christian
    Kretzschmar, Vanessa
    Raith, Felix
    Gunther, Fabian
    Stommel, Markus
    Jankowai, Jochen
    Hotz, Ingrid
    Nagel, Thomas
    Scheuermann, Gerik
    COMPUTER GRAPHICS FORUM, 2021, 40 (06) : 135 - 161
  • [36] Synthetic tensor gauge fields
    Zhang, Shaoliang
    Lv, Chenwei
    Zhou, Qi
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [37] On operators associated with tensor fields
    Salimov A.
    Journal of Geometry, 2010, 99 (1-2) : 107 - 145
  • [38] Exceptional geometry and tensor fields
    Cederwall, Martin
    Edlund, Joakim
    Karlsson, Anna
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [39] A THEOREM ON CURVATURE TENSOR FIELDS
    NOMIZU, K
    OZEKI, H
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (02) : 206 - &
  • [40] Tensor products of valued fields
    Ben Yaacov, Itai
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 42 - 46