A surface roughness prediction model using response surface methodology in micro-milling Inconel 718

被引:0
|
作者
Lu X. [1 ]
Wang F. [1 ]
Wang X. [1 ]
Lu Y. [1 ]
Si L. [1 ]
机构
[1] Key Laboratory for Precision and Non-traditional Machining Technology, Ministry of Education, Dalian University of Technology, No. 2 LingGong Road, DaLian, LiaoNing Province
关键词
Analysis of variance; ANOVA; Inconel; 718; Micro-milling; Response surface methodology; RSM; Surface roughness;
D O I
10.1504/IJMMM.2017.084006
中图分类号
学科分类号
摘要
In this paper, a surface roughness prediction model of micro-milling Inconel 718 by applying response surface methodology (RSM) is presented. The experiments based on centre composite rotatable design (CCRD) are designed to conduct the experiments. The cutting parameters considered are depth of cut, spindle speed and feed rate. Statistical methods, analysis of variance (ANOVA), are used to analyse the adequacy of the predictive model. The influence of each micro-milling parameter on surface roughness is analysed; also the magnitude order of parameters is determined. Depth of cut is found to be the critical influence factor. At last, the parameters interaction on surface roughness of micro-milling Inconel 718 is discussed by graphical means through MATLAB. © 2017 Inderscience Enterprises Ltd.
引用
收藏
页码:230 / 245
页数:15
相关论文
共 50 条
  • [11] Prediction model of the surface roughness of micro-milling single crystal copper
    Xiaohong Lu
    Liang Xue
    Feixiang Ruan
    Kun Yang
    Steven Y. Liang
    Journal of Mechanical Science and Technology, 2019, 33 : 5369 - 5374
  • [12] Surface roughness and forces prediction of milling Inconel 718 with neural network
    Wiciak-Pikula, Martyna
    Felusiak, Agata
    Chwalczuk, Tadeusz
    Twardowski, Pawel
    2020 IEEE 7TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2020, : 260 - 264
  • [13] Relationship between energy efficiency and surface morphologies in micro-milling of SLM Inconel 718
    Duan, Xianyin
    Su, Fengxiao
    Gao, Shuaishuai
    Zhu, Kunpeng
    Deng, Ben
    Zhang, Yu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 31 : 1473 - 1482
  • [14] Deflection prediction of micro-milling Inconel 718 thin-walled parts
    Jia, Zhenyuan
    Lu, Xiaohong
    Gu, Han
    Ruan, Feixiang
    Liang, Steven Y.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2021, 291 (291)
  • [15] The effect of surface roughness on ultrasonic assisted milling of Inconel 718
    All-Hafiz, Ohammad Shah
    Kasim, Mohd Shahir
    Mohamad, W. Noor Fatihah
    Izamshah, Raja
    Sundi, Syahrul Azwan
    Akmal, Muhammad
    PROCEEDINGS OF INNOVATIVE RESEARCH AND INDUSTRIAL DIALOGUE 2018 (IRID'18), 2019, : 23 - 24
  • [16] Micro-milling Force Prediction of Inconel 718 Thin-walled Parts
    Lu X.-H.
    Gu H.
    Cong C.
    Ruan F.-X.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2023, 44 (02): : 242 - 250
  • [17] Surface quality analysis in ball end milling of Inconel 718 cantilevers by response surface methodology
    Bhopale, Nandkumar N.
    Pawade, Raju S.
    Joshi, Suhas S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2017, 231 (04) : 628 - 640
  • [18] Surface topography simulation and roughness prediction of micro-milling single crystal copper
    Lu X.
    Sun X.
    Hou P.
    Xue L.
    Liang S.Y.
    International Journal of Nanomanufacturing, 2021, 17 (02) : 139 - 153
  • [19] Investigation of micro-milling process parameters for surface roughness and milling depth
    Ibrahim Etem Saklakoglu
    Sefika Kasman
    The International Journal of Advanced Manufacturing Technology, 2011, 54 : 567 - 578
  • [20] Investigation of micro-milling process parameters for surface roughness and milling depth
    Saklakoglu, Ibrahim Etem
    Kasman, Sefika
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 54 (5-8): : 567 - 578