Linear approximations of addition modulo 2n

被引:0
|
作者
Wallén, Johan [1 ]
机构
[1] Laboratory for Theoretical Computer Science, Helsinki University of Technology, P.O.Box 5400, FIN-02015 HUT, Espoo, Finland
关键词
Cryptography - Computation theory;
D O I
10.1007/978-3-540-39887-5_20
中图分类号
学科分类号
摘要
We present an in-depth algorithmic study of the linear approximations of addition modulo 2n. Our results are based on a fairly simple classification of the linear approximations of the carry function. Using this classification, we derive an θ(log n)-time algorithm for computing the correlation of linear approximation of addition modulo 2n, an optimal algorithm for generating all linear approximations with a given non-zero correlation coefficient, and determine the distribution of the correlation coefficients. In the generation algorithms, one or two of the selection vectors can optionally be fixed. The algorithms are practical and easy to implement. © International Association for Cryptologic Research 2003.
引用
收藏
页码:261 / 273
相关论文
共 50 条
  • [21] MODULO (2N + 1) ARITHMETIC-LOGIC
    AGRAWAL, DP
    RAO, TRN
    IEE JOURNAL ON ELECTRONIC CIRCUITS AND SYSTEMS, 1978, 2 (06): : 186 - 188
  • [22] MODULO (2n plus 1) ARITHMETIC LOGIC.
    Agrawal, Dharma P.
    Rao, Thammavaram R.N.
    1978, 2 (06): : 186 - 188
  • [23] On the Design of Modulo 2n±1 Subtractors and Adders/Subtractors
    E. Vassalos
    D. Bakalis
    H. T. Vergos
    Circuits, Systems, and Signal Processing, 2011, 30 : 1445 - 1461
  • [24] EFFICIENT METHOD FOR DESIGNING MODULO {2n ± k} MULTIPLIERS
    Pettenghi, Hector
    Cotofana, Sorin
    Sousa, Leonel
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2014, 23 (01)
  • [25] REGULAR VLSI ARCHITECTURES FOR MULTIPLICATION MODULO (2N + 1)
    CURIGER, AV
    BONNENBERG, H
    KAESLIN, H
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (07) : 990 - 994
  • [26] Designing of area and power efficient modulo 2N multiplier
    Shalini, R. V.
    Sampath, P.
    2014 3RD INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS (ICECCS 2014), 2014, : 246 - 249
  • [27] Modulo deflation in (2n+1,2n, 2n-1) converters
    Bi, S
    Wang, W
    Al-Khalili, A
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 429 - 432
  • [28] Memristor Based Modulo Multiplier Design For (2n-1) and 2n Radix
    Banerjee, Arindam
    Pal, Sohini
    Bhattacharyya, Swapan
    Das, Debesh Kumar
    PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON 2017 DEVICES FOR INTEGRATED CIRCUIT (DEVIC), 2017, : 20 - 24
  • [29] HALFADDERS MODULO 2N USING READ-ONLY MEMORIES
    NUN, MAB
    WOODWARD, ME
    ELECTRONICS LETTERS, 1974, 10 (11) : 213 - 214
  • [30] Differential characteristic probability of added key on modulo 2n operation
    Zheng, Bin
    Guan, Jie
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2009, 31 (11): : 2708 - 2712