NiCo2S4 nanosphere anchored on N, S co-doped activated carbon for high-performance asymmetric supercapacitors

被引:0
|
作者
Yang, Xuan [1 ]
Wang, Xueqin [3 ]
Yu, Xuewen [1 ]
Wang, Guilong [2 ]
Huang, Biao [2 ]
Ruan, Dianbo [4 ]
Jing, Ge [5 ,6 ]
Lin, Guanfeng [2 ]
机构
[1] Ningbo Univ Technol, Sch New Energy, Ningbo 315336, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350108, Peoples R China
[3] Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China
[4] Ningbo Univ, Fac Mech Engn & Mech, Ningbo 315211, Peoples R China
[5] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[6] Ningbo CRRC New Energy Technol Co Ltd, CRRC Supercapacitor Energy Storage & Conservat Tec, Ningbo 315112, Peoples R China
关键词
Asymmetric supercapacitor; Energy storage; N; S co-doped activated carbon; NANOTUBE ARRAYS; ELECTRODES; NANOPARTICLES; DECORATION; NANOSHEETS; NITROGEN; SPHERES; SULFUR; GROWTH;
D O I
10.1016/j.indcrop.2024.119813
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Throughout the evolution of supercapacitors, binary transition metal sulfides have been extensively researched for their potential as electrode materials. Here, NSAC-NiCo2S4 composites are prepared by in-situ growing NiCo2S4 nanosphere on N, S co-doped activated carbon (NSAC) using a simple solvothermal way. The optimized NSAC-NiCo2S4 composite inherits the NSAC's huge specific surface area, hierarchical porous structure, and high electronic conductivity, along with the excellent capacitive performance of NiCo2S4. This combination effectively reduces contact resistance and enhances the transfer rate. Calculations based on the density functional theory further indicate that synergistic interactions between NiCo2S4 and NSAC in the composite lower the OH- adsorption energy and release more active electrons. This enhancement facilitates the electrochemical reaction kinetics in supercapacitors. The as-fabricated NSAC-NiCo2S4-2 electrode possesses a remarkable specific capacitance (762 F g- 1 ) at 1 A g- 1 and exhibits a minimal charge transfer resistance (0.28 Omega). Furthermore, an asymmetric supercapacitor (positive electrode: NSAC-NiCo2S4-2; negative electrode: NSAC), achieves an impressive energy density of 36.6 Wh kg- 1 at a power density of 400.0 W kg- 1 . It also exhibits exceptional cycling stability, maintaining 86.2 % of its capacity after 10,000 cycles. These excellent results further highlight the great potential of the obtained NSAC-NiCo2S4 composites for use in energy reserve systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Preparation of high-performance asymmetric supercapacitors based on NiCo2S4 nanospheres and CuO-MOF nanosheets on carbon fibers
    Liu, Baopeng
    Zhang, Jun
    Xu, Jiawei
    Pan, Yanjie
    Huang, Yanshan
    Han, Sheng
    Li, Yuanting
    FUEL, 2024, 356
  • [22] Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors
    Liu, Mingquan
    Huo, Silu
    Xu, Min
    Wu, Linlin
    Liu, Mingjie
    Xue, Yifei
    Yan, Yi-Ming
    ELECTROCHIMICA ACTA, 2018, 274 : 389 - 399
  • [23] Construction of hierarchical porous carbon coated NiCo2S4 nanowire composites for high-performance supercapacitors
    Liu, Yurong
    Niu, Shaoyu
    Hu, Rong
    JOURNAL OF POROUS MATERIALS, 2021, 28 (05) : 1345 - 1353
  • [24] Facile synthesis of N-doped NiCo2S4/CNTs with coordinated effects as cathode materials for high-performance supercapacitors
    Wang, Zhongbing
    Wang, Mingxing
    Hao, Yonghao
    Chen, Chunnian
    IONICS, 2021, 27 (08) : 3567 - 3578
  • [25] Facile synthesis of N-doped NiCo2S4/CNTs with coordinated effects as cathode materials for high-performance supercapacitors
    Zhongbing Wang
    Mingxing Wang
    Yonghao Hao
    Chunnian Chen
    Ionics, 2021, 27 : 3567 - 3578
  • [26] Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors
    Liu, Yongkun
    Jiang, Guohua
    Sun, Shiqing
    Xu, Bin
    Zhou, Junyi
    Zhang, Yang
    Yao, Juming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 731 : 560 - 568
  • [27] Growth of NiCo2S4 nanotubes on carbon nanofibers for high performance flexible supercapacitors
    Liu, Yongkun
    Jiang, Guohua
    Sun, Shiqing
    Xu, Bin
    Zhou, Junyi
    Zhang, Yang
    Yao, Juming
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 804 : 212 - 219
  • [29] Hierarchical NiCo2S4 Nanotube@NiCo2S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors
    Chen, Haichao
    Chen, Si
    Shao, Hongyan
    Li, Chao
    Fan, Meiqiang
    Chen, Da
    Tian, Guanglei
    Shu, Kangying
    CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (02) : 248 - 255
  • [30] Adjustment of Vulcanization Degree to Prepare High-Performance NiCo2S4 Material for Supercapacitors
    Xiaoming Yue
    Xiying Li
    Zanpeng Ge
    Yaqing Yang
    Zihan Zhao
    Tianlong Liu
    Hu He
    Journal of Electronic Materials, 2023, 52 : 7208 - 7220