On the sample path properties of mixed Poisson processes

被引:0
|
作者
Fu M. [1 ]
Peng X. [1 ]
机构
[1] Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon
关键词
Credit risk; Method of moments; Mixed Poisson process; Pólya–Lundberg process; Sample autocorrelation; Sample autocovariance;
D O I
10.1016/j.orl.2017.10.015
中图分类号
学科分类号
摘要
The mixed Poisson process has been widely used in financial engineering for modeling arrival of events that cluster in time, as it has strictly stationary and positively correlated increments. However, we show that, surprisingly, the sample autocovariance and autocorrelation of the increments of a mixed Poisson process converge to zero almost surely as the sample size goes to infinity. Consequently, the sample autocovariance or autocorrelation cannot be used in the method of moments for parameter estimation of mixed Poisson processes. © 2017 Elsevier B.V.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [41] SAMPLE PATH PROPERTIES OF GAUSSIAN STOCHASTIC-PROCESSES INDEXED BY A LOCAL FIELD
    EVANS, SN
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1988, 56 : 580 - 624
  • [42] On Fractional Lévy Processes: Tempering, Sample Path Properties and Stochastic Integration
    B. Cooper Boniece
    Gustavo Didier
    Farzad Sabzikar
    Journal of Statistical Physics, 2020, 178 : 954 - 985
  • [43] Gaussian chaos and sample path properties of additive functionals of symmetric Markov processes
    Marcus, MB
    Rosen, J
    ANNALS OF PROBABILITY, 1996, 24 (03): : 1130 - 1177
  • [44] Poincaré Inequality on the Path Space of Poisson Point Processes
    Feng-Yu Wang
    Chenggui Yuan
    Journal of Theoretical Probability, 2010, 23 : 824 - 833
  • [45] POISSON PROCESSES ON GROUPS AND FEYNMAN PATH-INTEGRALS
    COMBE, P
    HOEGHKROHN, R
    RODRIGUEZ, R
    SIRUGUE, M
    SIRUGUECOLLIN, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 77 (03) : 269 - 288
  • [46] Poincar, Inequality on the Path Space of Poisson Point Processes
    Wang, Feng-Yu
    Yuan, Chenggui
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (03) : 824 - 833
  • [47] SAMPLE PATH CONSISTENCY FOR MARKOV-PROCESSES
    CHACON, RV
    JAMISON, B
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (02): : 169 - 182
  • [48] MUTUAL INFORMATION, STRONG EQUIVALENCE, AND SIGNAL SAMPLE PATH PROPERTIES FOR GAUSSIAN-PROCESSES
    BAKER, CR
    INFORMATION AND CONTROL, 1979, 41 (02): : 156 - 164
  • [49] Further characterizations of homogeneous and mixed Poisson processes.
    Schmidt, KD
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 33 (02): : 421 - 421
  • [50] MARTIN-DYNKIN BOUNDARY OF MIXED POISSON PROCESSES
    XANH, NX
    ZESSIN, H
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 37 (03): : 191 - 200