An adaptive finite element method for the infinity Laplacian

被引:0
|
作者
Lakkis, Omar [1 ]
Pryer, Tristan [2 ]
机构
[1] Department of Mathematics, University of Sussex, Brighton,GB-BN1 9QH, United Kingdom
[2] Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading,GB-RG6 6AX, United Kingdom
关键词
14;
D O I
10.1007/978-3-319-10705-9__28
中图分类号
学科分类号
摘要
引用
收藏
页码:283 / 291
相关论文
共 50 条
  • [21] An optimal adaptive finite element method for elastoplasticity
    Carsten Carstensen
    Andreas Schröder
    Sebastian Wiedemann
    Numerische Mathematik, 2016, 132 : 131 - 154
  • [22] An optimal adaptive finite element method for elastoplasticity
    Carstensen, Carsten
    Schroeder, Andreas
    Wiedemann, Sebastian
    NUMERISCHE MATHEMATIK, 2016, 132 (01) : 131 - 154
  • [23] Optimality of a Standard Adaptive Finite Element Method
    Rob Stevenson
    Foundations of Computational Mathematics, 2007, 7 : 245 - 269
  • [24] An adaptive finite element method for contact problems in finite elasticity
    Rachowicz, W.
    Cecot, W.
    Zdunek, A.
    ADVANCES IN MECHANICS: THEORETICAL, COMPUTATIONAL AND INTERDISCIPLINARY ISSUES, 2016, : 493 - 496
  • [25] Minimization of p-Laplacian via the Finite Element Method in MATLAB
    Matonoha, Ctirad
    Moskovka, Alexej
    Valdman, Jan
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 533 - 540
  • [26] A Weak Galerkin Finite Element Method for p-Laplacian Problem
    Ye, Xiu
    Zhang, Shangyou
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (02) : 219 - 233
  • [27] Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver
    Ainsworth, Mark
    Glusa, Christian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 4 - 35
  • [28] FINITE ELEMENT APPROXIMATION OF THE p(.)-LAPLACIAN
    Breit, Dominic
    Diening, Lars
    Schwarzacher, Sebastian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 551 - 572
  • [29] Correction to: Adaptive finite element approximation of optimal control problems with the integral fractional Laplacian
    Zhaojie Zhou
    Qiming Wang
    Advances in Computational Mathematics, 2023, 49
  • [30] Adaptive Finite Element Approximation of Sparse Optimal Control Problem with Integral Fractional Laplacian
    Wang, Fangyuan
    Wang, Qiming
    Zhou, Zhaojie
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (01)